

INL/MIS-13-30307 Rev. 2

October 2014

BISON Users Manual
BISON Release 1.1

J. D. Hales
K. A. Gamble
B. W. Spencer
S. R. Novascone
G. Pastore
W. Liu
D. S. Stafford
R. L. Williamson
D. M. Perez
R. J. Gardner

NOTICE

This information was prepared as an account of work sponsored by an agency of the U.S.
Government. Neither the U.S. Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for any third party’s use, or the results of such use, of any information, apparatus,
product, or process disclosed herein, or represents that its use by such third party would not
infringe privately owned rights. The views expressed herein are not necessarily those of the
U.S. Nuclear Regulatory Commission.

 iii

INL/MIS-13-30307 Rev. 2

BISON Users Manual

J. D. Hales
K. A. Gamble
B. W. Spencer

S. R. Novascone
G. Pastore

W. Liu
D. S. Stafford

R. L. Williamson
D. M. Perez

R. J. Gardner

October 2014

Idaho National Laboratory

Fuel Modeling and Simulation Department
Idaho Falls, Idaho 83415

Prepared for the

U.S. Department of Energy
Office of Nuclear Energy

Under U.S. Department of Energy-Idaho Operations Office
Contract DE-AC07-99ID13727

BISON Users Manual

1J. D. Hales
1K. A. Gamble
1B. W. Spencer

1S. R. Novascone
1G. Pastore

2W. Liu
1D. S. Stafford

1R. L. Williamson
1D. M. Perez

1R. J. Gardner

1Idaho National Laboratory
2ANATECH, Inc.

Fuel Modeling and Simulation
Idaho National Laboratory

P.O. Box 1625
Idaho Falls, ID 83415-3840

October 2014

Contents

1 Introduction 7

2 Running BISON 8
2.1 Checking Out the Code . 8

2.1.1 Internal Users . 8
2.1.2 External Users . 9

2.2 Updating BISON . 10
2.3 Executing BISON . 10
2.4 Getting Started . 11

2.4.1 Input to BISON . 11
2.4.2 Post Processing . 12
2.4.3 Graphical User Interface . 12

3 Overview 13
3.1 Basic Syntax . 13
3.2 BISON Syntax Page . 14
3.3 Units . 14
3.4 High-Level Description of a BISON Simulation 14

4 Global Parameters 16

5 Problem 17

6 Mesh 18

7 Variables 21

8 AuxVariables 22

9 Functions 23
9.1 Composite . 23
9.2 ParsedFunction . 23
9.3 PiecewiseBilinear . 24
9.4 PiecewiseConstant . 24
9.5 PiecewiseLinear . 25

10 Boundary Conditions 27
10.1 BulkCoolantBC . 27

2

10.2 ConvectiveFluxBC . 28
10.3 ConvectiveFluxFunction . 28
10.4 CoolantChannel . 29
10.5 Dirichlet . 31

10.5.1 DirichletBC . 31
10.5.2 PresetBC . 32
10.5.3 FunctionDirichletBC . 32
10.5.4 FunctionPresetBC . 32

10.6 HydrogenPickup . 33
10.7 PlenumPressure . 33
10.8 Pressure . 35

11 Contact 36
11.1 Mechanical Contact . 36
11.2 Thermal Contact . 37

11.2.1 GapHeatTransfer . 37
11.2.2 GapHeatTransferLWR . 39

12 AuxKernels 42
12.1 AuxKernels for Output . 42

12.1.1 MaterialRealAux . 42
12.1.2 MaterialTensorAux . 43

12.2 AuxKernels for Specifying Fission Rate . 43
12.2.1 FissionRateAux . 43
12.2.2 FissionRateAuxLWR . 44
12.2.3 FissionRateFromPowerDensity . 45

12.3 Other AuxKernels . 45
12.3.1 Al2O3Aux . 45
12.3.2 BurnupAux . 46
12.3.3 FastNeutronFluenceAux . 46
12.3.4 FastNeutronFluxAux . 46
12.3.5 GrainRadiusAux . 47
12.3.6 OxideAux . 47
12.3.7 PelletIdAux . 48

13 Burnup 49

14 Kernels 52
14.1 Arrhenius Diffusion . 52
14.2 BodyForce . 52
14.3 Gravity . 53
14.4 Heat Conduction . 53
14.5 Heat Conduction Time Derivative . 53
14.6 Isotropic Diffusion . 54

3

14.7 Neutron Heat Source . 54
14.8 SolidMechanics . 55
14.9 Thermo-diffusion (Soret effect, thermophoresis) 55
14.10TimeDerivative . 56

15 Hydride Precipitation and Dissolution 57

16 Materials 59
16.1 Thermal Models . 59

16.1.1 HeatConductionMaterial . 59
16.1.2 ThermalCladMaterial . 60
16.1.3 ThermalFuel . 60
16.1.4 ThermalFuelMaterial . 61

16.2 Solid Mechanics Models . 61
16.2.1 CreepPyC . 61
16.2.2 CreepSiC . 62
16.2.3 CreepUO2 . 63
16.2.4 Elastic . 65
16.2.5 IrradiationGrowthZr4 . 65
16.2.6 MechMaterial . 66
16.2.7 MechZry . 67
16.2.8 RelocationUO2 . 68
16.2.9 ThermalIrradiationCreepZr4 . 69
16.2.10 PyCIrradiationStrain . 70
16.2.11 VSwellingUO2 . 71

16.3 Fission Gas Models . 71
16.3.1 ForMas . 71
16.3.2 Sifgrs . 72

16.4 Mass Diffusion Models . 74
16.5 Other Models . 75

16.5.1 Arrhenius Material Property . 75
16.5.2 Density . 75

17 Postprocessors 77
17.1 DecayHeatFunction . 77
17.2 ElementIntegralPower . 78
17.3 ElementalVariableValue . 78
17.4 Fission Gas Postprocessors . 79
17.5 InternalVolume . 79
17.6 NodalVariableValue . 80
17.7 NumNonlinearIterations . 80
17.8 PlotFunction . 81
17.9 SideAverageValue . 81
17.10SideFluxIntegral . 81

4

17.11TimestepSize . 82

18 Solution Execution and Time Stepping 83
18.1 Timestepping . 84

18.1.1 Direct Time Step Control with Constant Time Step 84
18.1.2 Direct Time Step Control with Varying Time Step Size 85
18.1.3 Adaptive Time Stepping . 85

18.2 PETSc Options . 87
18.2.1 Constraint Contact . 87
18.2.2 Dirac Contact . 88

18.3 Quadrature . 88

19 Outputs 89
19.1 Basic Input File Syntax . 89
19.2 Advanced Syntax . 89
19.3 Common Output Parameters . 90
19.4 File Output Names . 91
19.5 Typical BISON Example . 91

20 Dampers 93
20.1 MaxIncrement . 93

21 Restart and Recover 94
21.1 Definitions . 94
21.2 Simple Restart (Variable initialization) . 94
21.3 Enabling Checkpoints . 95
21.4 Advanced Restart . 96
21.5 Reloading Data . 96
21.6 Recover . 96

22 UserObjects 97
22.1 PelletBrittleZone . 97
22.2 SolutionUserObject . 97

23 Reference Residual Problem 99

24 Frictional Contact Problem 100

25 Mesh Script 102
25.1 Overview . 102

25.1.1 Run the Main Script . 102
25.1.2 Mesh Architecture . 102

25.2 Input File Review . 102
25.2.1 Pellet Type . 102
25.2.2 Pellet Collection . 104

5

25.2.3 Stack Options . 105
25.2.4 Clad . 105
25.2.5 Meshing Parameters . 106

25.3 Output File Review . 108
25.4 Things to Know . 108

25.4.1 Main Script . 108
25.4.2 Error Messages . 109

Bibliography 110

6

1 Introduction

BISON [1] is a finite element-based nuclear fuel performance code applicable to a variety of
fuel forms including light water reactor fuel rods, TRISO particle fuel [2], and metallic rod [3]
and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion,
for 1D spherically symmetric, 2D axisymmetric or 3D geometries. Fuel models are included to
describe temperature and burnup dependent thermal properties, fission product swelling, densifi-
cation, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity,
irradiation growth, and thermal and irradiation creep models are implemented for clad materials.
Models are also available to simulate gap heat transfer, mechanical contact, and the evolution
of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BI-
SON is based on the MOOSE framework [4] and can therefore efficiently solve problems using
standard workstations or very large high-performance computers.

Two input files are required as input when running BISON. One is a mesh file. While MOOSE
supports several file formats, the ExodusII [5] format is the one used almost exclusively in
BISON. This file commonly has “e” as its file extension. The mesh file may be generated
using CUBIT [6] or another meshing tool. A further option is a meshing script bundled with
BISON. This script, dependent on CUBIT and suitable for LWR fuel rod meshes, is the subject
of Chapter 25.

The second file is a text file. This file commonly has “i” as its extension and contains a
description of the variables, equations, boundary conditions, and material models associated
with an analysis. The structure of the text input file is the main focus of this document.

7

2 Running BISON

2.1 Checking Out the Code

BISON is now hosted on GitLab and the process of checking out the code has significantly
changed since SVN. The instructions for checking out the code is different depending upon
whether you are an internal (INL onsite user) or external user. These instructions are only for
checking out and running the code. If you plan to contribute to BISON detailed instructions for
contributing can be found on the idaholab/bison wiki page on GitLab.

2.1.1 Internal Users

The first step is to obtain an INL High Performance Computing (HPC) account. Once HPC ac-
cess has been granted go to the GitLab website and login with your HPC username and password
on the LDAP tab shown in Figure 2.1.

Figure 2.1: GitLab login screen.

Once logged in and access has been granted to the idaholab/bison repository the following
steps are required fot the initial checkout of the code:

cd ∼/projects/
git clone https://hpcgitlab.inl.gov/idaholab/bison.git

8

https://hpcgitlab.inl.gov/

Next initialize the MOOSE submodule:

cd ∼/projects/bison/
git submodule update --init

It is necessary to build libMesh before building any application:

cd ∼/projects/bison/moose/scripts
./update_and_rebuild_libmesh.sh

Once libMesh has compiled successfully, you may now compile BISON:

cd ∼/projects/bison/
make (add -jn to run on multiple "n" processors)

Once BISON has compiled successfully, it is recommended to run the tests to make sure the
version of the code you have is running correctly.

cd ∼/projects/bison/
./run_test (add -jn to run "n" jobs at one time)

2.1.2 External Users

For external users there are a few additional steps to checking out the code. First request an
HPC account. Once an HPC account has been generated an ssh tunnel will need to be set up to
access GitLab. Add the following lines to your /.ssh/config file. Replace <USERNAME> with
the username for your HPC account.

#Multiplex connections for less RSA typing
Host *

ControlMaster auto
ControlPath ∼/.ssh/master -%r@%h:%p

General Purpose HPC Machines
Host eos hpcsc flogin1 flogin2 quark

User <USERNAME >
ProxyCommand ssh <USERNAME >@hpclogin.inl.gov netcat %h %p

#GitLab
Host hpcgitlab.inl.gov

User <USERNAME >
ProxyCommand nc -x localhost :5555 %h %p

#Forward license servers , webpages , and source control
Host hpclogin hpclogin.inl.gov

User <USERNAME >
HostName hpclogin.inl.gov
LocalForward 8080 hpcweb:80
LocalForward 4443 hpcsc:443

9

Next create a tunnel into the HPC environment and leave it tunning while you require access
to GitLab. If you close this window, you close the connection:

ssh -D 5555 username@hpclogin.inl.gov

Then you have to adjust your socks proxy settings for your web browser to reflect the follow-
ing settings localhost:5555

If you do not know how to do that, look up Change socks proxy settings for <insert the
name of your web browser here> on google.com or some other search engine. Once that is
complete you can login to the GitLab website. The rest of the steps for checking out the code
are the same as for internal users.

2.2 Updating BISON

If it has been some time since you have checked out the code an update will be required to gain
access to the new features within BISON. The following instructions apply to both internal and
external users to update the code. Note that external users must have their ssh tunnel set up prior
to proceeding. First update BISON:

cd ∼/projects/bison/
git pull

Then update the MOOSE submodule:

cd ∼/projects/bison/
git submodule update

Next rebuild libMesh:

cd ∼/projects/bison/moose/scripts/
./update_and_rebuild_libmesh.sh

And finally recompile BISON:

cd ∼/projects/bison/
make (add -jn to run on multiple "n" processors)

2.3 Executing BISON

When first starting out with BISON, it is recommended to start from an example problem similar
to the problem that you are trying to solve. Multiple examples can be found at bison/examples/
and bison/assessment/. It may be worth running the example problems to see how the code
works and modifying input parameters to see how the run time, results and convergence behavior
change.

To demonstrate running BISON, consider the inputSmeared.i example problem.

10

https://hpcgitlab.inl.gov/

cd ∼/projects/bison/examples/2D-RZ_rodlet_10pellets
To run with one processor
∼/projects/bison/bison -opt -i inputSmeared.i
To run in parallel (4 processors)
mpiexec -n 4 ../../bison -opt -i inputSmeared.i

2.4 Getting Started

2.4.1 Input to BISON

Before running any problem, the power function, axial profile, mesh, and any functions needed
for boundary conditions need to be generated.

Typically, a PiecewiseLinear function is used together with an external data file to specify a
complex power history. This file has time and power specified in columns or rows, with the first
row (or column) being the time (seconds) and the second row (or column) being power (W/m).
Any data file that is used as input to BISON must be in Windows comma separated values (csv)
format. Looking at inputSmeared.i, the power history is specified as:

[./power_history]
type = PiecewiseLinear
data_file = powerhistory.csv
format = rows
scale_factor = 1.0

[../]

The axial power profile, if present, is input as a PiecewiseBilinearFile. The axial peaking
factors are input as a table within the file, with the top row being the axial location from the
bottom of the rod and the left column as time. The axial peaking factors used for the example
problem inputSmeared.i for the first three axial locations is as follows:

9.44E-03, 1.54E-02, 2.13E-02
0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
1.00E+00, 5.37E-01, 8.68E-01, 1.01E+00
1.50E+08, 5.37E-01, 8.68E-01, 1.01E+00

The mesh can either be generated with the mesh script described in Chapter 25, or if you do
not have CUBIT, you can generate a simple 2D-RZ axisymmetric mesh with smeared solid fuel
pellets (single fuel column) with the SmearedPelletMesh within BISON. To generate the mesh
similar to the one used in the example problem inputSmeared.i, the mesh block would look like:

[Mesh]
type = SmearedPelletMesh
clad_mesh_density = customize
pellet_mesh_density = customize
ny_p = 80 # Total number of axial elements in fuel
nx_p = 11 # Number of radial elements in fuel
nx_c = 5 # Number of elements through thickness of clad

11

ny_cu = 3 # Number of axial element of upper clad gap
ny_c = 80 # Number of axial elements of clad wall
ny_cl = 3 # Number of axial elements of lower clad cap
clad_thickness = 5.6e-4
pellet_outer_radius = 0.0041
clad_bot_gap_height = 1.0e-3
pellet_quantity = 10
pellet_height = 0.01186
plenum_fuel_ratio = 0.045 # or use clad_top_gap_height = 3.0e-3
clad_gap_width = 8e-5
top_bot_clad_height = 2.24e-3
elem_type = QUAD8
displacements = ’disp_x disp_y ’
patch_size = 1000

[]

2.4.2 Post Processing

BISON typically writes solution data to an ExodusII file. Data may also be written in other
formats, a simple comma separated file giving global data being the most common.

Several options exist for viewing ExodusII results files. These include commercial as well as
open-source tools. One good choice is Paraview, which is open-source.

Paraview is available on a variety of platforms. It is capable of displaying node and element
data in several ways. It will also produce line plots of global data or data from a particular node
or element. A complete description of Paraview is not possible here, but a quick overview of
using Paraview with BISON results is available in the BISON workshop material.

2.4.3 Graphical User Interface

It is worth noting that a graphical user interface (GUI) exists for all MOOSE-based applications.
This GUI is named Peacock. Information about Peacock and how to set it up for use may be
found on the MOOSE wiki page.

Peacock may be used to generate a text input file. It is also capable of submitting the analysis.
Finally, it provides basic post processing capabilities.

12

http://mooseframework.org/wiki/Peacock

3 Overview

3.1 Basic Syntax

The input file used by BISON is broken into sections or blocks identified with square brackets.
The type of input block is placed in the opening brackets, and empty brackets mark the end of
the block.

[BlockName]
<block lines and subblocks >

[]

Each block may have subblocks, which may in turn have subblocks. The Functions block,
for example, will have multiple subblocks, each corresponding to a specific function. The line
commands in the Functions subblocks will describe the function details.

subblocks are opened and closed as

[./subblock_name]
<line commands >

[../]

Note that the name given in the subblocks must be unique when compared with all other sub-
blocks in the current block.

Line commands are given as key/value pairs with an equal sign between them. They specify
parameters to be used by the object being described. The key is a string (no whitespace), and
the value may be a string, an integer, a real number, or a list of strings, integers, or real numbers.
Lists are given in single quotes and are separated by whitespace.

Often subblocks will include a type line command. This line command specifies the partic-
ular type of object being described. The object type indicates which line commands are appro-
priate for describing the object. BISON will give an error message if a line command is given
that does not apply for the current object type. An error message will also be given if a line
command is repeated within the current block or if a line command is unused during the initial
setup of the simulation.

In this document, line commands are shown with the keyword, an equal sign, and, in angle
brackets, the value. If a default value exists for that line command, it is shown in parentheses.

In the initial description of a block, line commands common to all subblocks will be described.
Those line commands are then omitted from the description of the subblocks but are nonetheless
valid line commands for those subblocks.

The name of a subblock ([./<name>]) is most often arbitrary. However, the names of sub-
blocks of Variables, AuxVariables, and Postprocessors define the names used for those
entities.

13

3.2 BISON Syntax Page

A complete listing of all input syntax options is available on the MOOSE wiki page. See the
link for Input File Syntax.

3.3 Units

Because BISON uses several empirical models, BISON input expects SI units. This simplifies
model input by eliminating the possibility of one set of units for one model and another set of
units for a different model. Any needed unit conversions are done inside BISON.

3.4 High-Level Description of a BISON Simulation

The primary purpose of BISON is to solve coupled systems of partial differential equations
(PDEs), where the equations represent important physics related to engineering scale nuclear
fuel behavior. Fuel simulations typically consist of solving the following energy, momentum,
and mass (or species) conservation equations,

ρCp
∂T
∂t

+∇ ·q− e f Ḟ = 0, (3.1)

∇ ·σ+ρf = 0. (3.2)

∂C
∂t

+∇ ·J+λC−S = 0, (3.3)

In Equation 3.1, T , ρ and Cp are the temperature, density and specific heat, respectively, e f is
the energy released in a single fission event, and Ḟ is the volumetric fission rate.

Momentum conservation (Equation 3.2) is prescribed assuming static equilibrium at each time
increment where σ is the Cauchy stress tensor and f is the body force per unit mass (e.g. gravity).
The displacement field u, which is the primary solution variable, is connected to the stress field
via the strain, through a constitutive relation.

In the equation for species conservation (3.3) C, λ, and S are the concentration, radioactive
decay constant, and source rate of a given species, respectively.

Often, fuels performance problems are limited to thermomechanics, where only Equations 3.1
and 3.2 are solved.

Each term in Equations 3.1 - 3.3 (time derivatives, divergence, source, sinks, etc.) are referred
to as kernels and are discussed in greater detail in Chapter 14.

These equations are solved simultaneously using the finite element method (FEM) and JFNK
approach [7] on a discretized domain. The domain (also referred to as a mesh) may represent
uranium dioxide fuel pellets and zirconium clad in a light water reactor (LWR) simulation.
Blocks, side sets, and node sets are defined on the mesh such that material models and boundary
conditions can be assigned to different parts of the model. Details regarding the mesh, material
models, and boundary conditions can be found in chapters 6, 16, and 10 respectively.

14

https://hpcsc.inl.gov/data/trac/FPCP

Kernels, boundary conditions, and material models may require supporting information and
calculations. This is achieved through the use of Functions and AuxKernels, which are detailed
in chapters 9 and 12. For example, a function can be used to define power and time value pairs,
which would inform the source term in the energy equation (Equation 3.1). An AuxKernel could
be used to define fission rate or burnup, which could be used to inform material models that are
dependent on those values. AuxKernels can also be used for writing information, such as stress
components, to the output file.

Execution on the analysis is described in the Executioner block. Line commands describe
time stepping details and solver options. See Chapter 18 for details.

MOOSE Postprocessors compute a single scalar value at each timestep. These can be mini-
mums, maximums, averages, volumes, or any other scalar quantity. One example of the use of
Postprocessors in BISON is computing the gas volume of an LWR rod. The gas volume changes
timestep to timestep, but since it is a single scalar quantity, a Postprocessor computes this value.
Chapter 17 gives examples.

The following sections delve deeper into the topics mentioned here. The format basically
follows that of a typical BISON LWR input file and provides details for each section. Required
parameters have Required included in their description throughout the document.

15

4 Global Parameters

The GlobalParams block specifies parameters that are available, as appropriate, in any other
block or subblock in the input file. For example, imagine a subblock that accepts a line com-
mand with the keyword value. If the subblock has a line command for value, that line com-
mand will be used regardless of what is in GlobalParams. However, if the line command is
missing in the subblock but defined in GlobalParams, the subblock will use the parameter de-
fined in GlobalParams. In the example below, the line commands order = FIRST and family
= LAGRANGE will be available in all blocks and subblocks in the remainder of the input file.

[GlobalParams]
order = FIRST
family = LAGRANGE

[]

16

5 Problem

The Problem block is typically only used to indicate that a model should run as axisymmetric
(RZ) or spherically symmetric (RSPHERICAL). If the model is 3D, the Problem block may be
omitted.

[Problem]
coord_type = <string >

[]

There are two advanced cases that require a [Problem] block to be included in the input file.
These cases are a known as ReferenceResidualProblem and FrictionalContactProblem.
When using either of these types there are many required additions throughout the input file.
Therefore ReferenceResidualProblem and FrictionalContactProblem are discussed in
Chapters 23 and 24 respectively.

17

6 Mesh

The Mesh block’s purpose is to give details about the finite element mesh to be used. Typi-
cally meshes for BISON simulations are created using the mesh generation tool Cubit (known
as Trelis for non-DOE users). For simulations of LWR fuel there is a mesh script found in
bison/tools/UO2/. The details of the mesh script are provided in Chapter 25.

[Mesh]
file = <string >
displacements = <string list >
patch_size = <integer > (40)

[]

file Required. This is the mesh file name. BISON uses ExodusII mesh files.

displacements List of the displacement variables. This line must be given if the analysis
is to use contact or nonlinear geometry. Typically ’disp x disp y’ for
an axisymmetric analysis.

patch size Number of nearby elements to consider as possible contacting surfaces.
The value for the patch size depends upon whether Dirac or Constraint
based contact is used. For Dirac a typical value is 1000. For Constraint it
is ideal to choose a small enough patch size that encompasses all possible
contacting surfaces to reduce memory requirements. For example, if the
fuel moves up the clad 8 nodes make the patch size 20. This will allow
the contact search to use 10 nodes above and 10 nodes belows the point at
which the fuel comes into contact with the clad.

For users that do not have access to Cubit or Trelis but want to simulate LWR fuel there is a
SmearedPelletMesh type that can be used to generate a mesh for modeling a smeared column of
fuel (i.e. no dishes and or chamfers). The structure of the SmearedPelletMesh block is outlined
below:

[Mesh]
type = SmearedPelletMesh
clad_mesh_density = <string > (medium)
pellet_mesh_density = <string > (medium)
ny_p = <integer > (24)
nx_p = <integer > (8)
nx_c = <integer > (2)
ny_cu = <integer > (1)
ny_c = <integer > (24)
ny_cl = <integer > (1)

18

clad_thickness = <real > (0.00041)
pellet_outer_radius = <real > (0.0041)
clad_bot_gap_height = <real > (0.00127)
pellet_quantity = <real > (2)
elem_type = <string > (QUAD4)
displacements = <string list >
patch_size = <integer > (4)

[]

type SmearedPelletMesh

clad mesh density Mesh density of the clad. Choices are coarse, medium, fine or
custom. Default is medium.

pellet mesh density Mesh density of the fuel pellets. Choices are coarse, medium, fine
or custom. Default is medium.

ny p Number of finite elements in a fuel pellet in the axial direction.

nx p Number of finite elements in a fuel pellet in the radial direction.

nx c Number of finite elements through the thickness of the cladding in
the radial direction.

ny cu Number of finite elements through the thickness of the cladding in
the axial direction of the upper plug.

ny c Number of finite elements axially through the cladding.

ny cl Number of finite elements through the thickness of the cladding in
the axial direction of the lower plug.

clad thickness The cladding thickness.

pellet outer radius The outer radius of the pellet.

clad bot gap height Gap between bottom of pellet stck and the inside bottom surface of
the cladding.

pellet quantity Number of pellets to be included.

pellet height The height of the pellet.

plenum fuel ratio Ratio of the axial gas height to the fuel height inside the cladding.
Either plenum fuel ratio or clad top gap height must be
specified but not both.

clad top gap height Gap between top of pellet and inside top surface of cladding. Either
plenum fuel ratio or clad top gap height must be specified
but not both.

clad gap width Gap between outer radius of pellet and inside surface of cladding.

top bot clad height Thickness of top and bottom cladding walls.

elem type Type of finite element. Default is QUAD4. For second-order
meshes use QUAD8.

19

displacements List of the displacement variables. This line must be given if the
analysis is to use contact or nonlinear geometry. Typically ’disp x
disp y’ for an axisymmetric analysis.

patch size Number of nearby elements to consider as possible contacting sur-
faces. The value for the patch size depends upon whether Dirac or
Constraint based contact is used. For Dirac a typical value is 1000.
For Constraint it is ideal to choose a small enough patch size that
encompasses all possible contacting surfaces to reduce memory re-
quirements. For example, if the fuel moves up the clad 8 nodes
make the patch size 20. This will allow the contact search to use 10
nodes above and 10 nodes belows the point at which the fuel comes
into contact with the clad.

20

7 Variables

The Variables block is where all of the primary solution variables are identified. The name
of each variable is taken as the name of the subblocks. Primary solution variables often in-
clude temperature (usually named temp) and displacement (usually named disp x, disp y, and
disp z).

[Variables]
[./var1]

order = <string >
family = <string >

[../]
[./var2]

order = <string >
family = <string >
initial_condition = <real >
scaling = <real > (1)

[../]
[]

order The order of the variable. Typical values are FIRST and SECOND.

family The finite element shape function family. A typical value is
LAGRANGE.

initial condition Optional initial value to be assigned to the variable. Zero is assigned
if this line is not present.

scaling Amount to scale the variable during the solution process. This scal-
ing affects only the residual and preconditioning steps and not the
final solution values. This line command is sometimes helpful when
solving coupled systems where one variable’s residual is orders of
magnitude different that the other variables’ residuals.

21

8 AuxVariables

The AuxVariables block is where all of the auxiliary variables are identified. The name of each
variable is taken as the name of the subblocks. Auxiliary variables are used for quantities such
as fast neutron flux, element-averaged stresses, and other output variables.

[AuxVariables]
[./var1]

order = <string >
family = <string >

[../]
[./var2]

order = <string >
family = <string >
initial_condition = <real >

[../]
[]

order The order of the variable. Typical values are CONSTANT, FIRST, and
SECOND.

family The finite element shape function family. Typical values are
MONOMIAL and LAGRANGE.

initial condition Optional initial value to be assigned to the variable. Zero is assigned
if this line is not present.

22

9 Functions

9.1 Composite

The Composite function takes an arbitrary set of functions, provided in the functions pa-
rameter, evaluates each of them at the appropriate time and position, and multiplies them to-
gether. The function can optionally be multiplied by a scale factor, which specified using the
scale factor parameter.

[./composite]
type = CompositeFunction
functions = <string list >
scale_factor = <real > (1.0)

[../]

type CompositeFunction

functions List of functions to be multiplied together.

scale factor Scale factor to be applied to resulting function. Default is 1.

9.2 ParsedFunction

The ParsedFunction function takes a mathematical expression in value. The expression can
be a function of time (t) or coordinate (x, y, or z). The expression can include common math-
ematical functions. Examples include ’4e4+1e2*t’, ’sqrt(x*x+y*y+z*z)’, and ’if(t<=1.0, 0.1*t,
(1.0+0.1)*cos(pi/2*(t-1.0)) - 1.0)’. Constant variables may be used in the expression if they
have been declared with vars and defined with vals. Further information can be found at
http://warp.povusers.org/FunctionParser/.

[./parsedfunction]
type = ParsedFunction
value = <string >
vals = <real list >
vars = <string list >

[../]

type ParsedFunction

value Required. String describing the function.

vals Values to be associated with variables in vars.
vars Variable names to be associated with values in vals.

23

http://warp.povusers.org/FunctionParser/

9.3 PiecewiseBilinear

The PiecewiseBilinear function reads a csv file and interpolates values based on the data in
the file. The interpolation is based on x-y pairs. If axis is given, time is used as the y index.
Either xaxis or yaxis or both may be given. Time is used as the other index if one of them
is not given. If radius is given, xaxis and yaxis are used to orient a cylindrical coordinate
system, and the x-y pair used in the query will be the radial coordinate and time.

[./piecewiselinear]
type = PiecewiseBilinear
data_file = <string >
axis = <0, 1, or 2 for x, y, or z>
xaxis = <0, 1, or 2 for x, y, or z>
yaxis = <0, 1, or 2 for x, y, or z>
scale_factor = <real > (1.0)
radial = <bool > (false)

[../]

type PiecewiseBilinear

data file File holding your csv data.

axis Coordinate direction to use in the function evaluation.
xaxis Coordinate direction used for x-axis data.
yaxis Coordinate direction used for y-axis data.

scale factor Scale factor to be applied to resulting function. Default is 1.

radial Set to true if interpolation should be done along a radius rather than along
a specific axis. Requires xaxis and yaxis.

9.4 PiecewiseConstant

The PiecewiseConstant function defines the data using a set of x-y data pairs. Instead of lin-
early interpolating between the values, however, the PiecewiseConstant function is constant
when the abscissa is between the values provided by the user. The direction parameter con-
trols whether the function takes the value of the abscissa of the user-provided point to the right
or left of the value at which the function is evaluated.

[./piecewiseconstant]
type = PiecewiseConstant
x = <real list >
y = <real list >
xy_data = <real list >
data_file = <string >
format = <string > (rows)
scale_factor = <real > (1.0)
axis = <0, 1, or 2 for x, y, or z>
directon = <string > (left)

24

[../]

type PiecewiseConstant

x List of x values for x-y data.

y List of y values for x-y data.

xy data List of pairs of x-y data points.

data file Name of an file containing x-y data.

format Format of x-y data in external file.

scale factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not present, time
is used as the function input.

9.5 PiecewiseLinear

The PiecewiseLinear function performs linear interpolations between user-provied pairs of
x-y data. The x-y data can be provided in three ways. The first way is through a combination of
the x and y paramaters, which are lists of the x and y coordinates of the data points that make
up the function. The second way is in the xy data parameter, which is a list of pairs of x-y
data that make up the points of the function. This allows for the function data to be specified in
columns by inserting line breaks after each x-y data point. Finally, the x-y data can be provided
in an external file containing comma-separated values. The file name is provided in data file,
and the data can be provided in either rows (default) or columns, as specified in the format
parameter.

By default, the x-data corresponds to time, but this can be changed to correspond to x, y, or z
coordinate with the axis line. If the function is queried outside of its range of x data, it returns
the y value associated with the closest x data point.

[./piecewiselinear]
type = PiecewiseLinear
x = <real list >
y = <real list >
xy_data = <real list >
data_file = <string > (rows)
format = <string >
scale_factor = <real > (1.0)
axis = <0, 1, or 2 for x, y, or z>

[../]

type PiecewiseLinear

x List of x values for x-y data.

y List of y values for x-y data.

xy data List of pairs of x-y data points.

25

data file Name of an file containing x-y data.

format Format of x-y data in external file.

scale factor Scale factor to be applied to resulting function. Default is 1.

axis Coordinate direction to use in the function evaluation. If not present, time
is used as the function input.

26

10 Boundary Conditions

The BCs block is for specifying various types of boundary conditions.

[BCs]
[./name]

type = <BC type >
boundary = <string list >
...

[../]
[]

type Type of boundary condition.

boundary List of boundaries (side sets). Either boundary numbers or names.

10.1 BulkCoolantBC

The BulkCoolantBC boundary condition determines the heat transfer from a boundary based
upon a bulk coolant temperature and coolant heat tansfer coefficient.

[./bulkcoolantBC]
type = BulkCoolantBC
variable = <variable >
boundary = <string list >
bulk_temperature = <real > (800)
heat_transfer_coefficient = <real > (2000)

[../]

type BulkCoolantBC

variable Required. Primary variable associated with this boundary
condition.

boundary Required. List of boundary names or ids where this bound-
ary condition will apply.

bulk temperature The bulk coolant temperature.

heat transfer coefficient The heat transfer coefficient of the coolant.

27

10.2 ConvectiveFluxBC

The ConvectiveFluxBC boundary condition determines the value on a boundary based upon
the initial and final values, the flux through the boundary and the duration of exposure..

[./convectivefluxBC]
type = ConvectiveFluxBC
variable = <variable >
boundary = <string list >
initial = <real > (500)
final = <real > (500)
rate = <real > (7500)

[../]

type ConvectiveFluxBC

variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will
apply.

initial The initial value of the variable on the boundary.

final The final value of the variable on the boundary.

rate The flux of the variable through the boundary.

10.3 ConvectiveFluxFunction

The ConvectiveFluxFunction boundary condition determines the value on a boundary based
upon the heat transfer coefficient of the fluid on the outside of boundary and far-field tempera-
ture.

[./ convectivefluxFunction]
type = ConvectiveFluxFunction
variable = <variable >
boundary = <string list >
T_infinity= <string >
coefficient = <real >
coefficient_function = <string >

[../]

type ConvectiveFluxFunction

variable Required. Primary variable associated with this boundary condi-
tion.

boundary Required. List of boundary names or ids where this boundary
condition will apply.

T infinity Required. The name of the function describing the far-field tem-
perature.

28

coefficient Required. The heat transfer coefficient of the fluid in contact
with the boundary. If coefficient function is provided this
coefficient multiplies the function.

coefficient function Function describing the heat transfer coefficient.

10.4 CoolantChannel

The effect of the coolant on the heat transfer at the exterior cladding surface can be modeled
using the CoolantChannel feature. This feature appears in the input file in its own block (i.e.,
not inside the BCs block).

The presence of some input parameters causes others to be ignored. The following describes
the input parameter precedence.

If heat transfer coefficient is given, its value will be assigned to the given boundary.
All other parameters related to the heat transfer coefficient calculation are ignored.

Enthalpy is taken as coupledEnthalpy if present. Otherwise, heat flux is calculated based on
linear heat rate, specification of number axial zone, and specification of heat flux, in
highest precedence order. The integrated heat flux is computed based on the same precedence.
As an example, if number axial zone and heat flux are specified, heat flux will be ignored.
These are used as inputs to the heat transfer coefficient correlations.

[CoolantChannel]
[./coolantchannel]

boundary = <string list >
variable = <string >
axial_power_profile = <string >
chf_correlation_type=<int> (4)
compute_enthalpy =<bool > (true)
cond_metal = <real >
cond_oxide = <real >
coupledEnthalpy = <string >
direction = <string >
direction2 = <string >
flow_area = <real >
heat_flux = <string >
heat_transfer_coefficient = <string or real >
heat_transfer_mode = <string > (0)
heated_diameter = <real >
heated_perimeter = <real >
htc_correlation_type = <string >
hydraulic_diameter = <real >
inlet_massflux = <string or real >
inlet_pressure = <string or real >
inlet_temperature = <string or real >
input_Tchf = <real > (0)
linear_heat_rate = <string >
number_axial_zone = <integer > (0)
number_lateral_zone = <integer > (1)

29

oxide_thickness = <string >
oxide_model = <string > (zirconia)
pbr = <real >
rod_diameter = <real > (0.01)
rod_pitch = <real > (0.0126)

[../]
[]

boundary Required. List of boundaries. Typically only one boundary
id is given.

variable Required. Name of variable associated with this BC. Typ-
ically temp.

axial power profile Function name for function describing axial power factors.

chf correlation type CHF correlatons. one of 1 for EPRI, 2 for GE, 3 for Zuber,
and 4 for BIASI.

compute enthalpy option to turn on /off the enthalpy calculation.

cond metal Conductivity of the metal. Used if oxide model is user.

cond oxide Conductivity of the oxide. Used if oxide model is user.

coupledEnthalpy Variable name. If given, enthalpy is taken from this variable
directly instead of being calculated.

direction One of x, y, or z. Coordinate direction associated with fluid
flow. Default is y.

direction2 One of x, y, or z. Coordinate direction associated with lat-
eral dimension of model. Default is x. This input is used
for plate geometry.

flow area Flow area. If used, must be used with heated diameter,
heated perimeter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

heat flux Function name for function describing the heat flux at the
cladding surface.

heat transfer coefficient Either a function name for a function describing the heat
transfer coefficient or a real value to be assigned as the heat
transfer coefficient. If present, other parameters controlling
the heat transfer coefficient calculation will be ignored.

heat transfer mode One of 0 (automatic), 1 (natural convection), 2 (forced liq-
uid convection), 3 (subcooled boiling), 4 (saturated boil-
ing), 5 (transition boiling), 6 (film boiling), and 7 (single
phase vapor).

heated diameter Heated diameter. If used, must be used with flow area,
heated perimeter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

30

heated perimeter Heated perimeter. If used, must be used with flow area,
heated diameter, and hydraulic diameter. If used,
rod diameter and rod pitch will be ignored.

htc correlation type One of 1 (Thom), 2 (Jens Lottes), 3(Chen) or 4 (Shrock-
Grossman) for pre-CHF correlations;

or 1 (McDonough-Milich-King) and 2 (modified Condie-
Bengtson) for transition boiling correlations;

or 1 (Groenveld) and 2 (Dougall-Rohsenow) for film boil-
ing correlations.

hydraulic diameter Hydraulic diameter. If used, must be used with flow area,
heated perimeter, and heated diameter. If used,
rod diameter and rod pitch will be ignored.

inlet massflux Either a function name for a function describing the inlet
mass flux or a real value to be assigned as the inlet mass
flux.

inlet pressure Either a function name for a function describing the inlet
pressure or a real value to be assigned as the inlet pressure.

inlet temperature Either a function name for a function describing the inlet
temperature or a real value to be assigned as the inlet tem-
perature.

input Tchf Input temperature at critical heat flux.

linear heat rate Function name for a function describing the linear heat rate.

number axial zone Number of axial divisions along the cladding to be used in
integrating the heat flux.

number lateral zone Number of lateral divisions along the cladding to be used
in integrating the heat flux. This input is used for plate
geometry.

oxide thickness Name of AuxVariable representing the oxide thickness. If
not given, the calculated heat transfer coefficient will not
account for an oxide layer.

oxide model One of zirconia, alumina, or user.
rod diameter Diameter of the fuel rod.
rod pitch Pitch or spacing between fuel rods.

10.5 Dirichlet

10.5.1 DirichletBC

[./dirichletbc]
type = DirichletBC

31

variable = <variable >
boundary = <string list >
value = <real >

[../]

type DirichletBC
variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will
apply.

value Required. Value to be assigned.

10.5.2 PresetBC

The PresetBC takes the same inputs as DirichletBC and also acts as a Dirichlet boundary
condition. However, the implementation is slightly different. PresetBC causes the value of
the boundary condition to be applied before the solve begins where DirichletBC enforces the
boundary condition as the solve progresses. In certain situations, one is better than another.

10.5.3 FunctionDirichletBC

[./functiondirichletbc]
type = FunctionDirichletBC
variable = <variable >
boundary = <string list >
function = <string >

[../]

type FunctionDirichletBC
variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition will
apply.

function Required. Function that will give the value to be applied by this boundary
condition.

10.5.4 FunctionPresetBC

The FunctionPresetBC takes the same inputs as FunctionDirichletBC and also acts as a
Dirichlet boundary condition. However, the implementation is slightly different. FunctionPresetBC
causes the value of the boundary condition to be applied before the solve begins where FunctionDirichletBC
enforces the boundary condition as the solve progresses. In certain situations, one is better than
another.

32

10.6 HydrogenPickup

The HydrogenPickup BC is used to model the flux of hydrogen into the clad that is caused by
oxide growth. The flux is approximated as a constant fraction of the hydrogen liberated by oxide
growth at the interface between the coolant water and the clad.

Note that this BC must be coupled to a variable that gives the thickness of the oxide over time,
such as with the OxideAux kernel. For this to work properly, OxideAux must be set to update
on updates to the residual; it will not work if the OxideAux is set to update on time steps.

[./hydrogen_pickup]
type = HydrogenPickup
variable = <variable >
boundary = <string list >
oxide_thickness = <variable >
pickup_fraction = <real > (0.15)
clad_thickness = <real > (660e-6)

[../]

type HydrogenPickup

variable Required. Primary variable associated with this boundary condition.

boundary Required. List of boundary names or ids where this boundary condition
will apply.

oxide thickness Required. The coupled variable that gives the oxide thickness on the
boundary.

pickup fraction The fractional amount of hydrogen liberated by the oxide growth that is
absorbed into the clad.

clad thickness The initial thickness of the clad.

10.7 PlenumPressure

The PlenumPressure block is used to specify internal rod pressure as a function of temperature,
cavity volume, and moles of gas.

The PlenumPressure boundary condition uses two levels of nesting within the BCs block.
This allows the pressure to be applied properly in all coordinate directions although it is specified
one time only.

The volume and pressure specified in the plenum pressure block along with the initial condi-
tion specified in the temperature variable block are used to calculate the initial moles. The initial
moles are then used to update the plenum pressure throughout the simulation. It is worth noting
to make sure the initial temperature is set to the temperature of the gas when fabricated, usually
room temperature (293 K).

The postprocessors coupled to the plenum pressure boundary condition (gas volume and rod
interior temperature) need to be executed at each residual such that the plenum pressure is cal-
culated for that specific timestep. If calculated at each timestep, the calculation uses volume and

33

temperature from the previous step to calculate the plenum pressure for the current step, causing
a lag in the plenum pressure used and reported for that timestep.

[./PlenumPressure]
[./plenumpressure]

boundary = <string list >
initial_pressure = <real > (0)
initial_temperature = <real >
startup_time = <real > (0)
R = <real >
output_initial_moles = <string >
temperature = <string >
volume = <string >
material_input = <string list >
output = <string >
refab_time = <real list >
refab_pressure = <real list >
refab_volume = <real list >
refab_type = <integer list >

[../]
[../]

boundary Required. List of boundary names or ids where this boundary
condition will apply.

initial pressure The initial pressure in the plenum.

initial temperature The initial temperature of the plenum. If not given, will use the
initial value from the Postprocessor given by temperature.

startup time The amount of time during which the pressure will ramp from
zero to its true value.

R Required. The universal gas constant. In BISON, SI units are
used, and R should be 8.3143.

output initial moles If given, the name to use to report the initial moles of gas.

temperature Required. The name of the Postprocessor holding the average
temperature value.

volume Required. The name of the Postprocessor holding the internal
volume.

material input The name of the Postprocessors that hold the amount of mate-
rial injected into the plenum.

output If given, the name to use for reporting the plenum pressure value.
If not given, the block name will be used.

refab time The time(s) at which the plenum pressure must be reinitialized
(likely due to fuel rod refabrication).

refab pressure The pressure of fill gas at refabrication. Number of values must
match number in refab time.

34

refab temperature The temperature at refabrication. Number of values must match
number in refab time.

refab volume The gas volume at refabrication. Number of values must match
number in refab time.

10.8 Pressure

The Pressure boundary condition uses two levels of nesting within the BCs block. This allows
the pressure to be applied properly in all coordinate directions although it is specified one time
only.

[./Pressure]
[./pressure]

boundary = <string list >
factor = <real > (1)
function = <string >

[../]
[../]

boundary Required. List of boundary names or ids where this boundary condition will
apply.

factor Magnitude of pressure to be applied. If function is also given, factor is mul-
tiplied by the output of the function and then applied as the pressure.

function Function that will give the value to be applied by this boundary condition.

35

11 Contact

Finite element contact enforces constraints between surfaces in the mesh. Mechanical contact
prevents penetration and develops contact forces. Thermal contact transfers heat between the
surfaces. In BISON there are currently two systems to choose from for mechanical contact:
Dirac and Constraint. Constaint based contact is recommended for two-dimensional problems
and Dirac for three-dimensional problems. Constraint contact is more robust but due to the patch
size requirement specified in the Mesh block constraint contact uses too much memory on 3D
problems. Depending upon the contact formalism chosen the solver options to be used change.
The details of the solver parameters recommended for Dirac and Constraint contact formalisms
are provided in Section 18.2.

11.1 Mechanical Contact

[Contact]
[./contact]

disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
formulation = <string > (DEFAULT)
friction_coefficient = <real > (0)
master = <string >
model = <string > (frictionless)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)
penalty = <real > (1e8)
normalize_penalty = <bool > (false)
slave = <string >
system = <string > (Dirac)
tangential_tolerance = <real >
tension_release = <real > (0)

[../]
[]

disp x Required. Variable name for displacement variable in x
direction. Typically disp x.

disp y Variable name for displacement variable in y direction.
Typically disp y.

36

disp z Variable name for displacement variable in z direction.
Typically disp z.

formulation One of DEFAULT, KINEMATIC, or PENALTY. DE-
FAULT is KINEMATIC.

friction coefficient The friction coefficient.
master Required. The boundary id for the master surface.

model One of frictionless, glued, or coulomb.

normal smoothing distance Distance from face edge in parametric coordinates over
which to smooth the contact normal. 0.1 is a reasonable
value.

normal smoothing method One of edge based or nodal normal based. If
nodal normal based, must also have a NodalNormals
block.

order The order of the variable. Typical values are FIRST and
SECOND.

penalty The penalty stiffness value to be used in the constraint.

normalize penalty Whether to normalize the penalty stiffness by the nodal area
of the slave node.

slave Required. The boundary id for the slave surface.

system The system to use for constraint enforcement. Options are
Dirac (DiracKernel) or Constraint. The default system is
Dirac.

tangential tolerance Tangential distance to extend edges of contact surfaces.

tension release Tension release threshold. A node will not be released if
its tensile load is below this value. If negative, no tension
release will occur.

In LWR fuel analysis, the cladding surface is typically the master surface, and the fuel surface
is the slave surface. It is good practice to make the master surface the coarser of the two.

The robustness and accuracy of the mechanical contact algorithm is strongly dependent on
the penalty parameter. If the parameter is too small, inaccurate solutions are more likely. If the
parameter is too large, the solver may struggle.

The DEFAULT option uses an enforcement algorithm that moves the internal forces at a slave
node to the master face. The distance between the slave node and the master face is penalized.
The PENALTY algorithm is the traditional penalty enforcement technique.

11.2 Thermal Contact

11.2.1 GapHeatTransfer

[ThermalContact]
[./thermalcontact]

37

type = GapHeatTransfer
disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
emissivity_1 = <real > (0)
emissivity_2 = <real > (0)
gap_conductivity = <real > (1)
gap_conductivity_function = <string >
gap_conductivity_function_variable = <string >
master = <string >
min_gap = <real > (1e-6)
max_gap = <real > (1e6)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)
quadrature = <bool > (false)
slave = <string >
stefan_boltzmann = <real > (5.669e-8)
tangential_tolerance = <real >
variable = <string >

[../]
[]

type GapHeatTransfer

disp x Variable name for displacement variable in x di-
rection. Typically disp x. Optional.

disp y Variable name for displacement variable in y di-
rection. Typically disp y. Optional.

disp z Variable name for displacement variable in z di-
rection. Typically disp z. Optional.

emissivity 1 The emissivity of the fuel surface.

emissivity 2 The emissivity of the cladding surface.

gap conductivity The thermal conductivity of the gap material.

gap conductivity function Thermal conductivity of the gap material as a
function. Multiplied by gap conductivity.

gap conductivity function variable Variable to be used in
thermal conductivity function in place of
time.

master Required. The boundary id for the master sur-
face.

min gap The minimum permissible gap size.

max gap The maximum permissible gap size.

38

normal smoothing distance Distance from face edge in parametric coordi-
nates over which to smooth the contact normal.
0.1 is a reasonable value.

normal smoothing method One of edge based or nodal normal based.
If nodal normal based, must also have a
NodalNormals block.

order The order of the variable. Typical values are
FIRST and SECOND.

quadrature Whether or not to use quadrature point-based
gap heat transfer.

slave Required. The boundary id for the slave sur-
face.

stefan boltzmann The Stefan-Boltzmann constant.
tangential tolerance Tangential distance to extend edges of contact

surfaces.
variable Required. The temperature variable name.

The quadrature option is recommended with second-order meshes.

11.2.2 GapHeatTransferLWR

GapHeatTransferLWR differs from GapHeatTransfer in that the gap conductivity is computed
based on the gases in the gap. To this may also be added the effect of solid-solid conduction.
The gas in the gap may be flushed in a refabrication step. (See also PlenumPressure (10.7).)

[ThermalContact]
[./thermalcontact]

type = GapHeatTransferLWR
contact_coef = <real > (10)
contact_pressure = <string >
disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
emissivity_1 = <real > (0)
emissivity_2 = <real > (0)
external_pressure = <real > (0)
initial_gas_fractions = <real list > (1 0 0 0 0 0 0 0 0 0)
initial_moles = <string >
gas_released = <string list >
gas_released_fractions = <real list > (0 0 0.153 0.847 0 0 0 0 0 0)
jump_distance_fuel = <real > (0)
jump_distance_clad = <real > (0)
jump_distance_model = <string > (DIRECT)
master = <string >
meyer_hardness <real > (0.68e9)
min_gap = <real > (1e-6)

39

max_gap = <real > (1e6)
normal_smoothing_distance = <real >
normal_smoothing_method = <string > (edge_based)
order = <string > (FIRST)
quadrature = <bool > (false)
refab_gas_fractions = <real list >
refab_time = <real list >
refab_type = <integer list >
roughness_fuel = <real > (1e-6)
roughness_clad = <real > (1e-6)
roughness_coef = <real > (1.5)
interaction_layer = <integer > (0)
slave = <string >
stefan_boltzmann = <real > (5.669e-8)
tangential_tolerance = <real >
variable = <string >

[../]
[]

type GapHeatTransferLWR

contact coef The leading coefficient on the solid-solid conduction rela-
tion (1/

√
m).

contact pressure The contact pressure variable. Typically
contact pressure.

disp x Variable name for displacement variable in x direction.
Typically disp x. Optional.

disp y Variable name for displacement variable in y direction.
Typically disp y. Optional.

disp z Variable name for displacement variable in z direction.
Typically disp z. Optional.

emissivity 1 The emissivity of the fuel surface.

emissivity 2 The emissivity of the cladding surface.

external pressure The external (gas) pressure.

initial gas fractions The initial fractions of constituent gases (helium, ar-
gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

initial moles The Postprocessor that will give the initial moles of gas.

gas released List of one or more Postprocessors that give the gas re-
leased.

gas released fractions The fraction of released gas that is assigned to helium, ar-
gon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, and water vapor. One set of
fractions for each Postprocessor listed in gas released.

40

jump distance fuel The temperature jump distance of the fuel.

jump distance clad The temperature jump distance of the clad.

jump distance model One of DIRECT (specify distances directly) or KENNARD
(jump distances computed based on gas properties).

master The boundary id for the master surface.

meyer hardness The Meyer hardness of the softer material (Pa).

min gap The minimum permissible gap size.

max gap The maximum permissible gap size.

normal smoothing distance Distance from face edge in parametric coordinates over
which to smooth the contact normal. 0.1 is a reasonable
value.

normal smoothing method One of edge based or nodal normal based. If
nodal normal based, must also have a NodalNormals
block.

order The order of the variable. Typical values are FIRST and
SECOND.

plenum pressure The name of the plenum pressure Postprocessor.

quadrature Whether or not to use quadrature point-based gap heat
transfer.

refab gas fractions The fractions of constituent gases at refabrication (helium,
argon, krypton, xenon, hydrogen, nitrogen, oxygen, carbon
monoxide, carbon dioxide, water vapor).

refab time The time(s) at which refabrication occurs. If multiple times
are given, multiple sets of refab gas fractions and mul-
tiple refab types must be given.

refab type One of 0 (instantaneous reset, evolving gas fraction there-
after) or 1 (instantaneous reset, constant gas fraction there-
after).

roughness fuel The roughness of the fuel surface.

roughness clad The roughness of the cladding surface.

roughness coef The coefficient for the roughness summation.

interaction layer One of 0 (fuel-cladding chemical interaction layer not con-
sidered) and 1 (interaction layer considered).

slave The boundary id for the slave surface.

stefan boltzmann The Stefan-Boltzmann constant.
tangential tolerance Tangential distance to extend edges of contact surfaces.

variable Required. The temperature variable name.

41

12 AuxKernels

AuxKernels are used to compute values for AuxVariables. They often compute quantities
based on functions, solution variables, and material properties. AuxKernels can apply to blocks
or boundaries. If not block or boundary is specified, the AuxKernel applies to the entire model.

[AuxKernels]
[./name]

type = <AuxKernel type >
block = <string list >
boundary = <string list >
...

[../]
[]

type Type of auxiliary kernel.

block List of blocks. Either block numbers or names.
boundary List of boundaries (side sets). Either boundary numbers or names.

12.1 AuxKernels for Output

12.1.1 MaterialRealAux

The MaterialRealAux AuxKernel is used to output material properties. Typically, the Aux-
Variable computed by MaterialTensorAux will be an element-level, constant variable. The
computed value will be the volume-averaged quantity over the element.

[./materialrealaux]
type = MaterialRealAux
property = <material property >
variable = <variable >

[../]

type MaterialRealAux

property Required. Name of material property.

variable Required. Name of AuxVariable that will hold result.

42

12.1.2 MaterialTensorAux

The MaterialTensorAux AuxKernel is used to output quantities related to second-order ten-
sors used as material properties. Stress and strain are common examples of these tensors. The
AuxKernel allows output of specific tensor entries or quantities computed from the entire ten-
sor. Typically, the AuxVariable computed by MaterialTensorAux will be an element-level,
constant variable. The computed value will be the volume-averaged quantity over the element.

[./materialtensoraux]
type = MaterialTensorAux
tensor = <material property tensor >
variable = <variable >
index = <integer >
quantity = <string >
point1 = <vector > (0, 0, 0)
point2 = <vector > (0, 1, 0)

[../]

type MaterialTensorAux

tensor Required. Name of second-order tensor material property. A typical second-
order tensor material property is stress.

variable Required. Name of AuxVariable that will hold result.

index Index into tensor, from 0 to 5 (xx, yy, zz, xy, yz, zx). Either index or quantity
must be specified.

quantity One of VonMises, PlasticStrainMag, Hydrostatic, Hoop, Radial,
Axial, MaxPrincipal, MedPrincipal, MinPrincipal, FirstInvariant,
SecondInvariant, ThirdInvariant, or TriAxiality. Either index or
quantity must be specified.

12.2 AuxKernels for Specifying Fission Rate

Note that these AuxKernels are not needed if the Burnup block (see Chapter 13) is present.

12.2.1 FissionRateAux

The FissionRateAux AuxKernel simply sets the value of a variable that stores the fission rate
(fissions/m3/s) to either a constant value or a value prescribed by a function. If both function
and value are provided, value is used as a scaling factor on the function.

[./fissionrateaux]
type = FissionRateAux
variable = <string >
block = <string list >
function = <string >
value = <real >

43

variable = <string >
[../]

type FissionRateAux

variable Required. Name of AuxVariable that will hold fission rate. Typically
fission rate.

value Value of fission rate. If function is present, value is multiplied by the function
value.

function Function describing the fission rate.

12.2.2 FissionRateAuxLWR

FissionRateAuxLWR is designed to calculate fission rate given rod averaged linear power and
pellet dimensions.

[./fissionrateauxlwr}
type = FissionRateAuxLWR
value = <real > (1)
rod_ave_lin_pow= <string >
axial_power_profile = <string >
pellet_diameter = <real >
pellet_inner_diameter = <real > (0)
fuel_volume_ratio = <real > (1)
energy_per_fission = <real > (3.28451e-11)
variable = <string >

[../]

value Fission rate if rod ave lin pow is not present. Scale factor if
rod ave lin pow is given.

variable Required. Name of AuxVariable that will hold fission rate.
Typically fission rate.

rod ave lin pow Function describing rod averaged linear power. This power is
the total power, the power from the volumetric fission rate times
the volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.

pellet diameter Required. The diameter of the fuel.

pellet inner diameter The inner diameter of the fuel.
fuel volume ratio Reduction factor for deviation from right circular cylinder fuel.

The ratio of actual volume to right circular cylinder volume.

energy per fission The energy released per fission in J/fission.

44

12.2.3 FissionRateFromPowerDensity

Like FissionRateAux, the FissionRateFromPowerDensity AuxKernel sets the fission rate
based on a function and a scaling factor. This AuxKernel is intended to be used specifically in
the case where the input function defines the power density (in W/m3). The power density is
divided by user-provided constant that defines the energy per fission (J/fission) to provide the
fission rate in (fissions/m3/s).

[./ fissionratefrompowerdensity]
type = FissionRateFromPowerDensity
variable = <string >
block = <string list >
function = <string >
energy_per_fission = <real >

[../]

type FissionRateAux

variable Required. Name of AuxVariable that will hold fission rate. Typi-
cally fission rate.

function Required. Function describing the power density in W/m3.

energy per fission Required. Energy released per fission in J/fission.

12.3 Other AuxKernels

12.3.1 Al2O3Aux

[./al2o3aux]
type = Al2O3Aux
variable = <string >
function = <string >
model = <string > (function)
temp = <string >

[../]

type Al2O3Aux

variable Required. Variable name corresponding to the Al2O3 thickness.

function Function describing the Al2O3 thickness as a function of time.

model One of function or griess. The griess option invokes a correlation appropriate for
plate fuel.

temp Variable name for temperature variable. Typically temp.

45

12.3.2 BurnupAux

BurnupAux computes burnup given the fission rate. Note that this AuxKernel is not needed if
the Burnup block (see Chapter 13) is present.

[./burnupaux]
type = BurnupAux
fission_rate = <string >
density = <real >
molecular_weight = <real > (0.270)

[../]

type BurnupAux

variable Required. Variable name corresponding to the burnup. Typically
burnup.

fission rate Required. Variable name corresponding to the fission rate. Typically
fission rate.

density Required. The initial fuel density.

molecular weight The molecular weight.

12.3.3 FastNeutronFluenceAux

[./fastneutronfluenceaux]
type = FastNeutronFluenceAux
variable = <string >
fast_neutron_flux = <string >

[../]

type FastNeutronFluenceAux

variable Required. Variable name corresponding to the fast neutron fluence.
Typically fast neutron fluence.

fast neutron flux Required. Variable name corresponding to the fast neutron flux. Typ-
ically fast neutron flux.

12.3.4 FastNeutronFluxAux

[./fastneutronfluxaux]
type = FastNeutronFluxAux
variable = <string >
rod_ave_lin_pow = <string >
axial_power_profile = <string >
factor = <real >
function = <string >
q_variable = <string >

46

[../]

type FastNeutronFluxAux

variable Required. Variable name corresponding to the fast neutron flux.
Typically fast neutron flux.

rod ave lin pow Function describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.

factor The fast neutron flux if function, rod ave lin pow, or
q variable is not given. Otherwise, a scale factor. Recommended
scale factor value is 3e13 (n/(m2-s)/(W/m)).

function Function that describes the fast neutron flux.
q variable Variable holding linear heat rate in pellet in W/m.

Only one of function, rod ave lin pow, and q variable may be given.

12.3.5 GrainRadiusAux

The GrainRadiusAux model is a simple empirical model for calculating grain growth. This can
be used with the Sifgrs model (16.3.2).

[./grainradiusaux]
type = GrainRadiusAux
variable = <string >
temp = <string >

[../]

type GrainRadiusAux

variable Required. Variable name corresponding to the fuel grain radius.

temp Required. Variable name for temperature variable. Typically temp.

12.3.6 OxideAux

[./oxideaux]
type = OxideAux
variable = <string >
fast_neutron_flux = <string >
lithium_concentration = <real > (0)
model_option = <int> (1)
oxide_scale_factor = <real > (1)
tin_content = <real > (1.38)
temperature = <string >

47

use_coolant_channel = <bool > (false)

type OxideAux

variable Required. Variable name corresponding to the zirconia thick-
ness.

fast neutron flux Variable name corresponding to the fast neutron flux. Typically
fast neutron flux.

lithium concentration Lithium concentration in ppm.

model option If 1, uses the EPRI KWU CE model. Otherwise, uses the EPRI
SLI model.

oxide scale factor Scale factor applied to the rate of oxide growth.

tin content Tin content in wt%.
temperature Required. Variable name for temperature variable. Typically

temp.
use coolant model If true, model will adjust surface temperature based on the

coolant channel model.

12.3.7 PelletIdAux

PelletIdAux is used to compute a pellet number. It may be used with a discrete pellet or
smeared fuel column mesh.

[./pelletidaux]
type = PelletIdAux
variable = <string >
a_lower = <real >
a_upper = <real >
number_pellets = <integer >

[../]

type PelletIdAux
variable Required. AuxVariable name corresponding to the Pellet ID.

a lower Required. The lower axial coordinate of the fuel stack.

a upper Required. The upper axial coordinate of the fuel stack.

number pellets Required. Number of fuel pellets.

48

13 Burnup

The Burnup block computes fission rate and burnup for LWR fuel including the radial power
factor. It is not appropriate for other fuel configurations. Use of the Burnup block will cause
BISON to create and populate burnup, fission rate, and optionally other AuxVariables.

The radial power factor calculation is performed on a secondary numerical grid, created inter-
nally by BISON. This is the reason for the num radial and num axial line commands. Once the
fission rate, burnup, and other quantities are computed on this secondary grid, they are mapped
back to the finite element mesh.

[Burnup]
[./burnup]

block = <string list >
rod_ave_linear_power = <string >
axial_power_profile = <string >
num_radial = <integer >
num_axial = <integer >
a_lower = <real >
a_upper = <real >
fuel_inner_radius = <real > (0)
fuel_outer_radius = <real > (0.0041)
fuel_volume_ratio = <real > (1)
density = <real >
energy_per_fission = <real > (3.28451e-11)
p1 = <real > (3.45)
i_enrich = <real list > (0.05, 0.95, 0, 0, 0, 0)
sigma_c = <real list > (9.7, 0.78, 58.6, 100, 50, 80)
sigma_f = <real list > (41.5, 0, 105, 0.584, 120, 0.458)
sigma_a_thermal = <real list > (sum of sigma_c and sigma_f)
reactor_type = <string > (LWR)
N235 = <string >
N238 = <string >
N238 = <string >
N240 = <string >
N241 = <string >
N242 = <string >
RPF = <string >

[../]
[]

block Required. List of fuel blocks. Either block numbers or names.

49

rod ave lin pow Function describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times the
volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.

num radial Number of radial divisions in secondary grid used to compute ra-
dial power profile.

num axial Number of axial divisions in secondary grid used to compute radial
power profile.

a lower Required. The lower axial coordinate of the fuel stack.

a upper Required. The upper axial coordinate of the fuel stack.

fuel inner radius The inner radius of the fuel.
fuel outer radius The outer radius of the fuel.
fuel volume ratio Reduction factor for deviation from right circular cylinder fuel. The

ratio of actual volume to right circular cylinder volume.

density Required. The initial fuel density.

energy per fission The energy released per fission in J/fission.

p1 Distribution function coefficient p1. If not given, will take default
value based on reactor type.

i enrich The initial enrichment for the six isotopes.

sigma c The capture cross sections for the six isotopes. If not given, will
take default value based on reactor type.

sigma f The fission cross sections for the six isotopes. If not given, will
take default value based on reactor type.

sigma a thermal The absorption (thermal) cross sections for the six isotopes.

reactor type Reactor type. One of LWR or HWR. Will set default values for p1,
sigma f, and sigma c if those are not otherwise specified.

N235 Indicates that the output of the concentration of N235 is required.
Typically N235.

N238 Indicates that the output of the concentration of N238 is required.
Typically N238.

N239 Indicates that the output of the concentration of N239 is required.
Typically N239.

N240 Indicates that the output of the concentration of N240 is required.
Typically N240.

N241 Indicates that the output of the concentration of N241 is required.
Typically N241.

N242 Indicates that the output of the concentration of N242 is required.
Typically N242.

50

RPF Indicates that the output of the radial power factor is required. Typ-
ically RPF.

51

14 Kernels

Kernels are used to evaluate integrals associated with a given term in a PDE. They often com-
pute quantities based on functions, solution variables, auxiliary variables, and material prop-
erties. All Kernels act on blocks. If no block is specified, the Kernel will act on the entire
model.

[Kernels]
[./name]

type = <kernel type >
block = <string list >
...

[../]
[]

type Type of kernel.

block List of blocks. Either block numbers or names.

14.1 Arrhenius Diffusion

Kernel for applying an Arrhenius diffusion term. If present, an ArrheniusDiffusionCoef
material model must also be present.

[./arrheniusdiffusion]
type = ArrheniusDiffusion
variable = <variable >

[../]

type ArrheniusDiffusion

variable Required. Variable associated with this volume integral.

14.2 BodyForce

Kernel for applying an arbitrary body force to the model.

[./bodyforce]
type = BodyForce
variable = <variable >
value = <real > (0)

52

function = <string > (1)
[../]

type BodyForce

variable Required. Variable associated with this volume integral.

value Constant included in volume integral. Multiplied by the value of function if
present.

function Function to be multiplied by value and used in the volume integral.

14.3 Gravity

Gravity may be applied to the model with this kernel. The required density is computed and
provided internally given inputs in the Materials block.

[./gravity]
type = Gravity
variable = <variable >
value = <real > (0)

[../]

type Gravity

variable Required. Variable name corresponding to the displacement direction in which
the gravity load should be applied.

value Acceleration of gravity. Typically -9.81 (m/s2).

14.4 Heat Conduction

Kernel for diffusion of heat or divergence of heat flux.

[./heatconduction]
type = HeatConduction
variable = <variable >

[../]

type HeatConduction

variable Required. Variable name corresponding to the heat conduction equation. Typi-
cally temp.

14.5 Heat Conduction Time Derivative

Kernel for ρCp∂T/∂t term of the heat equation.

53

[./ heatconductiontimederivative]
type = HeatConductionTimeDerivative
variable = <variable >

[../]

type HeatConductionTimeDerivative

variable Required. Variable name corresponding to the heat conduction equation. Typi-
cally temp.

14.6 Isotropic Diffusion

IsotropicDiffusion is just like ArrheniusDiffusion except that it takes an arbitrary ma-
terial property and uses it as the diffusivity. For example, it could be coupled to the material
property ArrheniusDiffusionCoef using the material property “arrhenius diffusion coef” or
to ArrheniusMaterialProperty using any name for the diffusivity.

[./diffusion]
type = IsotropicDiffusion
variable = <variable >
diffusivity_property = <string > (diffusivity)

[../]

type IsotropicDiffusion

variable Required. Variable associated with this volume integral.

diffusivity property The name of the material property to be used as the diffusivity.

14.7 Neutron Heat Source

Kernel for the volumetric heat source associated with fission.

[./neutronheatsource]
type = NeutronHeatSource
variable = <variable >
fission_rate = <variable >
decay_heat_function = <string >

[../]

type NeutronHeatSource

variable Required. Variable name corresponding to the heat conduction
equation. Typically temp.

fission rate Variable name corresponding to the fission rate. Typically
fission rate.

54

decay heat function Name of the postprocessor giving the decay heat curve. Typically
supplied for LOCA simulations.

14.8 SolidMechanics

The SolidMechanics block specifies inputs for the divergence of stress as part of the equa-
tions of solid mechanics. The divergence of stress is a Kernel in MOOSE nomenclature. The
SolidMechanics block informs MOOSE of the divergence kernels but is not placed inside the
Kernels block in the input file.

[SolidMechanics]
[./solidmechanics]

disp_x = <variable >
disp_y = <variable >
disp_z = <variable >
disp_r = <variable >
temp = <variable >

[../]
[]

disp x Variable name for displacement variable in x direction. Typically disp x.

disp y Variable name for displacement variable in y direction. Typically disp y.

disp z Variable name for displacement variable in z direction. Typically disp z for 3D
and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction for axisymmetric or
spherically symmetric cases. Typically disp x.

temp Variable name for temperature variable. Necessary for thermal expansion. Typi-
cally temp.

14.9 Thermo-diffusion (Soret effect, thermophoresis)

ThermoDiffusion is used to model mass flux of the form

J =−DQC
RT 2 ∇T (14.1)

where D is the mass diffusivity (property name is “mass diffusivity”), Q is the heat of transport,
C is the concentration, R is the gas constant, and T is the temperature.

[./soret_diffusion]
type = ThermoDiffusion
variable = <variable >
temp = <variable >
gas_constant = <real > (8.31446)

[../]

55

type ThermoDiffusion

variable Required. Variable associated with this volume integral.

temp Required. Coupled temperature variable.

gas constant Universal gas constant.

14.10 TimeDerivative

Kernel for applying a time rate of change term (∂u/∂t) to the model.

[./timederivative]
type = TimeDerivative
variable = <variable >

[../]

type TimeDerivative

variable Required. Variable associated with this volume integral.

56

15 Hydride Precipitation and Dissolution

Modeling the precipitation and dissolution of hydrides in the clad requires two variables to track
concentration of the hydrogen in solution and the hydrogen as hydride, associated kernels that
act as source/sink terms for the concentration variables, and a material model that calculates
precipitation and dissolution rates. Simulating the transport of the hydrogen in solution is not
covered here; see 14.6 for mass diffusion and 14.9 for the Soret effect. Also not shown here is
the flux boundary condition for hydrogen pickup at the oxide interface (see 10.6).

The two concentration variables track the hydrogen in solid solution (commonly referred to as
Css) and the equivalent concentration of hydrogen bound in the precipitated hydrides (commonly
referred to as Cp). These concentrations are usually specified in ppm by weight. Since the
hydride may have a steep gradient, monomials are helpful to keep the concentration positive.
Also note below the large scalings that are useful for speeding convergence.

[Variables]
[./ hydrogen_in_solution_ppm]

scaling = 1e12
[../]
[./ hydrogen_as_hydride_ppm]

order = CONSTANT
family = MONOMIAL
scaling = 1e12

[../]
[]

A single material is used to calculate the precipitation or dissolution rate. This is not a material
property per se; it is just used this way for convenience.

[Materials]
[./precip_rate]

type = HydridePrecipitationRate
block = <string >
temp = <variable >
hydrogen_in_solution_ppm = <variable >
hydrogen_as_hydride_ppm = <variable >
hydride_clamp_ppm = <real > (1000)

[../]
[]

type HydridePrecipitationRate

block The volume associated with this material.
temp Required. Coupled temperature variable.

57

hydrogen in solution ppm Required. Coupled Css in wt.ppm.

hydrogen as hydride ppm Required. Coupled Cp in wt.ppm.

hydride clamp ppm Max Cp before precipitation is turned off in wt.ppm.

The clamping feature is used to limit the amount of hydride that forms by precipitation. If the
hydride concentration exceeds the clamp value, the local rate of hydride precipitation will drop
to zero even if there is local over saturation of hydrogen in solid solution.

Finally, we just need to add two source kernels: one for Css and one for Cp. The kernel is a
source if precipitation increases the concentration or a sink if precipitation decreases the con-
centration (i.e. precipitation is a sink for hydrogen in solid solution). The HydrideSourceSink
kernel is used to do this for both variables:

[Kernels]
[./precipitation]

type = HydrideSourceSink
variable = <variable >
hydrogen_in_other_phase = <variable >
source_or_sink = <string >
temp = <variable >

[../]
[]

type HydrideSourceSink

variable Required. The concentration of hydrogen in one of the
phases.

hydrogen in other phase Required. The concentration variable for the other phase.

source or sink Required. “sink” if the kernel variable is Css or “source” if
the kernel variable is Cp.

temp Required. Coupled temperature variable.

Dissolution is also handled by the HydrideSourceSink kernels and HydridePrecipitationRate.
Dissolution occurs when the sign of the precipitation rate is negative.

58

16 Materials

The Materials block is for specifying material properties and models.

[Materials]
[./name]

type = <material type >
block = <string list >
...

[../]
[]

type Type of material model

block List of blocks. Either block numbers or names.

16.1 Thermal Models

16.1.1 HeatConductionMaterial

HeatConductionMaterial is a general-purpose material model for heat conduction. It sets the
thermal conductivity and specific heat at integration points.

[./ heatconductionmaterial]
type = HeatConductionMaterial
thermal_conductivity = <real >
thermal_conductivity_x = <string >
thermal_conductivity_y = <string >
thermal_conductivity_z = <string >
thermal_conductivity_temperature_function = <string >
specific_heat = <real >
specific_heat_temperature_function = <string >

[../]

type HeatConductionMaterial

thermal conductivity Thermal conductivity.

thermal conductivity x Thermal conductivity Postprocessor
for the x direction.

thermal conductivity y Thermal conductivity Postprocessor
for the y direction.

59

thermal conductivity z Thermal conductivity Postprocessor
for the z direction.

thermal conductivity temperature function Function describing thermal conduc-
tivity as a function of temperature.

specific heat Specific heat.

specific heat temperature function Function describing specific heat as a
function of temperature.

16.1.2 ThermalCladMaterial

The ThermalCladMaterial model computes the specific heat and thermal conductivity for a va-
riety of exotic cladding materials. The choices are Thermal316, ThermalAlloy33, ThermalD9,
ThermalFeCrAl, ThermalHT9, ThermalKanthal, ThermalMo, ThermalNa. The details of these
models are described in the Theory Manual. Examples of their use can be found in /bison/test-
s/thermalTests/, /bison/tests/thermalD9/, /bison/tests/thermalNa/, and /bison/tests/thermalHT9/.

[./thermalCladMaterial]
type = Thermal <string >
block = <string list >
temp = <string >

[../]

type Thermal<string>, where <string> is the fuel material type (eg. HT9)

block List of blocks this material applies to.

temp Name of temperature variable. Typically temp.

16.1.3 ThermalFuel

The ThermalFuel model computes specific heat and thermal conductivity for oxide fuel. A
number of correlations are available.

[./thermalfuel]
type = ThermalFuel
temp = <string >
burnup = <string >
porosity = <string >
initial_porosity = <real > (0.05)
oxy_to_metal_ratio = <real > (2.0)
Pu_content = <real > (0.0)
Gd_content = <real > (0.0)
model = < 0, 1, 2, 3, 4, or 5 for

Duriez , Amaya , Fink -Lucuta , Halden , NFIR , or Modified NFIR >
[../]

type ThermalFuel

60

temp Name of temperature variable. Typically temp.

burnup Name of burnup variable. Typically burnup.

porosity Name of porosity variable. Typically porosity. Optional.

initial porosity Initial porosity.

oxy to metal ratio Ratio of oxygen atoms to metal atoms.

Pu content Weight fraction of Pu in MOX fuel (typically 0.07).

Gd content Weight fraction of Gd in fuel.

model Required. The chosen thermal conductivity model.

16.1.4 ThermalFuelMaterial

The ThermalFuelMaterial model computes specific heat and thermal conductivity for a vari-
ety of exotic fuel materials. The choices are ThermalU, ThermalU10Mo, ThermalU20Pu10Zr,
ThermalU20Pu15Zr, ThermalU30Pu20Zr, ThermalU3Si2, ThermalUPuZr. The details of these
models are described in the Theory Manual. Examples of their use can be found in /bison/test-
s/thermalTests/.

[./thermalFuelMaterial]
type = Thermal <string >
block = <string list >
temp = <string >
porosity = <string >
density = <real >

[../]

type Thermal<string>, where <string> is the fuel material type (eg. U10Mo)

block List of blocks this material applies to.

temp Name of temperature variable. Typically temp.

porosity Name of porosity variable. Typically porosity. Optional.

density Required. Density, assumed constant.

16.2 Solid Mechanics Models

16.2.1 CreepPyC

CreepPyC is used to model the creep behavior of pyrolytic carbon.

[./creeppyc]
type = CreepPyC
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >

61

temp = <string >
flux = <string >
density = <real >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

type CreepPyC

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.

flux Required. Variable name corresponding to the fast neutron
flux. Typically fast neutron flux.

density Required. The initial material density.

thermal expansion Coefficient of thermal expansion.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

16.2.2 CreepSiC

[./creepsic]
type = CreepSiC
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
fast_neutron_flux = <string >
k_function = <string >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

62

type CreepSiC

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.

fast neutron flux Variable name corresponding to the fast neutron flux. Typi-
cally fast neutron flux.

k function Required. Function that takes temperature as input and gives
the K coefficient as output.

youngs modulus Young’s modulus.

poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

CreepSiC is used to model the creep behavior of silicon carbide. The relation is

ε̇cr = Kσφ. (16.1)

16.2.3 CreepUO2

The CreepUO2 is used to model the creep behavior of UO2.

[./creepuo2]
type = CreepUO2
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
fission_rate = <string >
density = <real >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
grain_radius = <real > (10e-6)
oxy_to_metal_ratio = <real > (2)
relative_tolerance = <real > (1e-4)

63

absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <true or false > (false)
stress_free_temperature = <real >
matpro_youngs_modulus = <true or false > (false)
matpro_poissons_ratio = <true or false > (false)
matpro_thermal_expansion = <true or false > (false)
burnup = <string >

[../]

type CreepUO2

disp x Variable name for displacement variable in x direction. Typ-
ically disp x.

disp y Variable name for displacement variable in y direction. Typ-
ically disp y.

disp z Variable name for displacement variable in z direction. Typ-
ically disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.

fission rate Variable name corresponding to the fission rate. Typically
fission rate.

density Required. The initial fuel density.

youngs modulus Young’s modulus.

poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.

grain radius Fuel grain radius.

oxy to metal ratio Oxygen to metal ratio.

relative tolerance Relative convergence tolerance for material model iterations.

absolute tolerance Absolute convergence tolerance for material model itera-
tions.

max its Maximum number of material model convergence iterations.

output iteration info Whether to output material model convergence information.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

matpro youngs modulus Set to true to use correlations for Young’s modulus from
MATPRO [8].

matpro poissons ratio Set to true to use correlations for Poisson’s modulus from
MATPRO [8].

64

matpro thermal expansion Set to true to use correlations for coefficient of thermal ex-
pansion from MATPRO [8].

burnup Name of burnup variable. Only required if using MATPRO
correlations. Typically burnup.

16.2.4 Elastic

The Elastic model is a simple hypo-elastic model.

[./elastic]
type = Elastic
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
stress_free_temperature = <real >

[../]

type Elastic

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

temp Name of temperature variable. Typically temp.

youngs modulus Young’s modulus.

poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

16.2.5 IrradiationGrowthZr4

The IrradiationGrowthZr4 model incorporates anisotropic volumetric swelling to track axial
elongation in Zr4 cladding.

65

[./irradiationgrowthzr4]
type = IrradiationGrowthZr4
fast_neutron_fluence = <string >
Ag = <real > (3e-20)
ng = <real > (0.794)

[../]

type IrradiationGrowthZr4

fast neutron fluence Name of fast neutron fluence variable. Typically
fast neutron fluence.

Ag Material constant that depends on the cladding metalurgical state.

ng Material constant that depends on the cladding metalurgical state.

16.2.6 MechMaterial

The MechMaterial model computes the elastic moduli and thermal expansion a variety of ma-
terials. The MechMaterial is used to describe a variety of materials that have the same form in
the input file. The choices are MechAlloy33, MechHT9, MechKanthal, MechMo, and MechSS316.
These materials are typically used as cladding materials. Examples of their use can be found in
/bison/tests/HT9 and /bison/tests/mechTests/.

[./mechMaterial]
type = Mech <string >
block = <string list >
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
youngs_modulus = <real >
poissons_ratio = <real >

[../]

type Mech<string>. Where <string> represents the particular material to be
used (e.g. HT9).

block The list of blocks this material applies to.

disp x Variable name for displacement variable in x direction. Typically disp x.

disp y Variable name for displacement variable in y direction. Typically disp y.

disp z Variable name for displacement variable in z direction. Typically disp z
for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction for axisym-
metric or spherically symmetric cases. Typically disp x.

temp Name of temperature variable. Typically temp.

66

youngs modulus Young’s modulus.

poissons ratio Poisson’s ratio.

16.2.7 MechZry

The MechZry model includes the option to model primary, thermal, and irradiation-induced
creep. It is also possible to turn on irradiation growth. If irradiation growth is turned on, do not
include the IrradiationGrowthZr4 model.

[./mechzry]
type = MechZry
fast_neutron_flux = <string >
fast_neutron_fluence = <string >
initial_fast_fluence = <real > (0.0)
cold_work_factor = <real > (0.01)
oxygen_concentration = <real > (0.0)
relative_tolerance = <real > (1e-4)
absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <bool > (false)
model_irradiation_growth = <bool > (true)
model_primary_creep = <bool > (true)
model_thermal_creep = <bool > (true)
model_irradiation_growth = <bool > (true)
model_thermal_expansion = <bool > (true)
model_elastic_modulus = <bool > (false)
stress_free_temperature = <real >
material_type = < 0 or 1 for SRA or RXA >

[../]

type MechZry

fast neutron flux Variable name corresponding to the fast neutron flux. Typi-
cally fast neutron flux.

fast neutron fluence Name of fast neutron fluence variable. Typically
fast neutron fluence.

initial fast fluence The initial fast neutron fluence.
cold work factor Cold work factor.
oxygen concentration Oxygen concentration in ppm.

relative tolerance Relative convergence tolerance for material model iterations.

absolute tolerance Absolute convergence tolerance for material model itera-
tions.

max its Maximum number of material model convergence iterations.

output iteration info Whether to output material model convergence information.

model irradiation creep Whether to model irradiation-induced creep.

67

model primary creep Whether to model primary creep.

model thermal creep Whether to model steady state thermal creep.

model irradiation growth Whether to model irradiation growth.

model thermal expansion Whether to use MATPRO model for thermal expansion.

model elastic modulus Whether to calculate temperature-dependent elastic moduli.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

material type Cladding material type. 0 for SRA, 1 for RXA.

16.2.8 RelocationUO2

The RelocationUO2 model accounts for cracking and relocation of fuel pellet fragments in the
radial direction. This model is necessary for accurate modeling of LWR fuel. Only one of q and
q variable may be given.

[./relocationuo2]
type = RelocationUO2
burnup = <string >
diameter = <real >
q = <string >
q_variable = <string >
gap = <real >
burnup_relocation_stop = <real >
relocation_activation1 = <real > (19685.039)
relocation_activation2 = <real > (45931.759)
relocation_activation3 = <real > (32808.399)
axial_axis = <0, 1, or 2 for x, y, or z>
model = <ESCORE_modified , ESCORE , or GAPCON > (ESCORE_modified)

[../]

type RelocationUO2

burnup Name of burnup variable. Typically burnup.

diameter Required. As fabricated cold diameter of pellet in meters.

q Function describing linear heat rate in pellet in W/m.

q variable Variable holding linear heat rate in pellet in W/m.

gap Required. As fabricated cold diametral gap in m.

burnup relocation stop Burnup at which relocation strain stops in FIMA.

relocation activation1 First activation linear power in W/m. The linear power at
which relocation turns on.

relocation activation2 Second activation linear power in W/m. The linear power at
which relocation transitions from the initial regime to the sec-
ondary regime.

68

relocation activation3 Third activation linear power in W/m. The linear power offset
in the secondary regime.

axial axis Coordinate axis of the axial direction of the fuel stack.
model Which relocation correlation to use.

16.2.9 ThermalIrradiationCreepZr4

The ThermalIrradiationCreepZr4 is used for Zr4 cladding in LWR simulations. It includes
fits for the temperature, irradiation, and stress effects on cladding creep.

[./ thermalirradiationcreepzr4]
type = ThermalIrradiationCreepZr4
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
temp = <string >
a_coeff = <real > (3.14e24)
n_exponent = <real > (5)
activation_energy = <real > (2.7e5)
gas_constant = <real > (8.3143)
fast_neutron_flux = <string >
c0_coef = <real > (9.881e-28)
c1_coef = <real > (0.85)
c2_coef = <real > (1)
youngs_modulus = <real >
poissons_ratio = <real >
thermal_expansion = <real > (0)
relative_tolerance = <real > (1e-4)
absolute_tolerance = <real > (1e-20)
max_its = <integer > (10)
output_iteration_info = <true or false > (false)
stress_free_temperature = <real >

[../]

type ThermalIrradiationCreepZr4

disp x Variable name for displacement variable in x direction. Typi-
cally disp x.

disp y Variable name for displacement variable in y direction. Typi-
cally disp y.

disp z Variable name for displacement variable in z direction. Typi-
cally disp z for 3D and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction
for axisymmetric or spherically symmetric cases. Typically
disp x.

69

temp Name of temperature variable. Typically temp.

a coef The leading coefficient in the thermal creep term.

n exponent The exponent in the thermal creep term.

activation energy The activation energy.

gas constant The universal gas constant.

fast neutron flux Variable name corresponding to the fast neutron flux. Typi-
cally fast neutron flux.

c0 coef The leading coefficient in the irradiation creep term.

c1 exponent The exponent on the irradiation creep fast neutron flux term.

c2 exponent The exponent on the irradiation creep stress term.

youngs modulus Young’s modulus.

poissons ratio Poisson’s ratio.
thermal expansion Coefficient of thermal expansion.

relative tolerance Relative convergence tolerance for material model iterations.

absolute tolerance Absolute convergence tolerance for material model iterations.

max its Maximum number of material model convergence iterations.

output iteration info Whether to output material model convergence information.

stress free temperature The stress-free temperature. If not specified, the initial tem-
perature is used.

burnup Name of burnup variable. Typically burnup.

16.2.10 PyCIrradiationStrain

The PyCIrradiationStrain model tracks the irradiation-induced strain in pyrolytic carbon.
The strain is isotropic for the buffer type and differs in the radial and tangential directions for
the dense type.

[./pycirradiationstrain]
type = PyCIrradiationStrain
fluence = <string >
pyc_type = <string > (buffer)

[../]

type PyCIrradiationrStrain

fluence Required. Variable name corresponding to the fast neutron fluence. Typically
fast neutron fluence.

pyc type One of buffer or dense.

70

16.2.11 VSwellingUO2

The VSwellingUO2model computes a volumetric strain to account for solid and gaseous swelling
and for densification.

[./vswellinguo2]
type = VSwellingUO2
temp = <string >
burnup = <string >
density = <real >
total_densification = <real > (0.01)
complete_burnup = <real > (5)

[../]

type VSwellingUO2

temp Name of temperature variable. Typically temp.

burnup Name of burnup variable. Typically burnup.

density Required. Initial fuel density.

total densification The densification that will occur given as a fraction of theoretical
density.

complete burnup The burnup at which densification is complete (MWd/kgU).

16.3 Fission Gas Models

Fission gas production and release modeling plays a vital role in fuel performance analysis.
Fission gas affects swelling, porosity, thermal conductivity, gap conductivity, and rod internal
pressure. The Sifgrs model is recommended.

16.3.1 ForMas

The ForMas model is maintained but not actively developed. The Sifgrs model is recom-
mended.

[./formas]
type = ForMas
grain_radius = <real > (10e-6)
resolution_rate = <real > (1e-7)
resolution_depth = <real > (1e-8)
bubble_radius = <real > (5e-7)
bubble_shape_factor = <real > (0.287)
surface_tension = <real > (0.626)
fractional_coverage = <real > (0.5)
external_pressure = <real > (10e6)
plenum_pressure = <string >
external_pressure_function = <string >
release_fraction = <real > (0)

71

fractional_yield = <real > (0.3017)
calibration_factor = <real > (1)

[../]

type ForMas

grain radius Initial fuel grain radius.

resolution rate Resolution rate from intergranular bubbles (1/s).

resolution depth Resolution layer depth.

bubble radius Grain boundary bubble radius.

bubble shape factor Non-spherical bubble shape factor.

surface tension Bubble surface tension (J/m2).
fractional coverage Fractional coverage of grain boundary at saturation.

external pressure Constant external hydrostatic pressure.

plenum pressure The name of the plenum pressure Postprocessor.

external pressure function Function describing the external pressure.

release fraction Fraction of boundary and resolved gas released at satura-
tion.

fractional yield Fractional yield of fission gas atoms per fission.

calibration factor Calibration factor to be multiplied by gas saturation den-
sity.

16.3.2 Sifgrs

Sifgrs is the recommended fission gas model.

[./sifgrs]
type = Sifgrs
initial_grain_radius = <real > (5e-6)
hydrostatic_stress_const = <real > (0.0)
surface_tension = <real > (0.5)
saturation_coverage = <real > (0.5)
hbs_release_burnup = <real > (100)
initial_porosity = <real > (0.05)
density = <real >
solid_swelling_factor = <real > (5.577e-5)
total_densification = <real > (0.01)
end_densification_burnup = <real > (5)
pellet_brittle_zone = <string >
diff_coeff_option <integer >
compute_swelling = <bool > (false)
ath_model = <bool > (false)
gbs_model = <bool > (false)
ramp_model = <bool > (false)

72

hbs_model = <bool > (false)
file_name = <string >
format = <string > (rows)
rod_ave_lin_power = <string >
axial_power_profile = <string >
grain_radius = <string >
transient_option = <integer >
pellet_id = <string >
temp = <string >
fission_rate = <string >
hydrostatic_stress = <string >
burnup = <string >

[../]

type Sifgrs

initial grain radius Initial grain radius.

hydrostatic stress const A constant value for hydrostatic stress. Ignored if
hydrostatic stress is given.

surface tension Bubble surface tension (J/m2).
saturation coverage Fractional grain boundary bubble coverage at saturation.

hbs release burnup Threshold local burnup for gas release from the HBS poros-
ity (MWd/kgU).

initial porosity Initial fuel porosity.

density Required. Initial fuel density.

solid swelling factor Solid swelling coefficient.

total densification The densification that will occur given as a fraction of theo-
retical density.

end densification burnup The burnup at which densification is complete (MWD/kgU).

pellet brittle zone The name of the UserObject that computes the width of the
brittle zone.

diff coeff option One of 0 (Turnbull), 1 (Andersson, low burnup), 2 (Anders-
son, high burnup), or 3 (Turnbull modified).

compute swelling Whether to compute fuel swelling.

ath model Whether to compute athermal gas release.

gbs model Whether to compute grain boundary sweeping.

ramp model Whether to include the ramp release model. Requires
file name.

hbs model Whether to include high burnup structure gas release.

file name File describing rod averaged linear power. This power is the
total power, the power from the volumetric fission rate times
the volume of fuel times the energy per fission.

73

format One of rows or columns.
rod ave lin pow Function describing rod averaged linear power. This power

is the total power, the power from the volumetric fission rate
times the volume of fuel times the energy per fission.

axial power profile Function describing axial power profile.

grain radius Variable name for grain radius.

transient option Select the transient fission gas release model. For transient
and burst release set equal to 2.

pellet id Variable name for pellet id. Typically pellet id.

temp Variable name for temperature variable. Typically temp.

fission rate Variable name corresponding to the fission rate. Typically
fission rate.

hydrostatic stress Variable name for hydrostatic stress. Typically
hydrostatic stress.

burnup Name of burnup variable. Typically burnup.

16.4 Mass Diffusion Models

This material computes a two-term Arrhenius diffusion coefficient of the form

d = d1exp
(
−q1

RT

)
+d2exp

(
−q2

RT

)
. (16.2)

[./ arrheniusdiffusioncoef]
type = ArrheniusDiffusionCoef
d1 = <real > (5.6e-8)
d1_function = <string >
d1_function_variable = <string >
d2 = <real > (5.2e-4)
q1 = <real > (2.09e5)
q2 = <real > (3.62e5)
gas_constant = <real > (8.3143)
temp = <string >

[../]

type ArrheniusDiffusionCoef

d1 First coefficient (m2/2).
d1 function Function to be multiplied by d1.

d1 function variable Variable to be used when evaluating d1 function. If not given,
time will be used.

d2 Second coefficient (m2/2).
q1 First activation energy (J/mol).

74

q2 Second activation energy (J/mol).

gas constant Universal gas constant (J/mol/K).

temp Name of temperature variable. Typically temp.

16.5 Other Models

16.5.1 Arrhenius Material Property

ArrheniusMaterialProperty is used to declare an arbitrary material property D that has the
form D = Ae−Q/RT , where A is the frequency factor, Q is the activation energy, R is the gas
constant, and T is the temperature.

[./some_property]
type = ArrheniusMaterialProperty
frequency_factor = <real >
activation_energy = <real >
gas_constant = <real > (8.314)
temp = <variable >
property_name = <string >

[../]

type ArrheniusMaterialProperty

frequency factor The coefficient in front of the exponential.

activation energy The activation energy.

gas constant The universal gas constant.

temp Coupled temperature variable.

property name The name for this property.

16.5.2 Density

The Density model creates a material property named density. If coupled to displacement
variables, the model adjusts density based on deformation.

[./density]
type = Density
disp_x = <string >
disp_y = <string >
disp_z = <string >
disp_r = <string >
density = <real >

[../]

type Density

disp x Variable name for displacement variable in x direction. Typically disp x.

75

disp y Variable name for displacement variable in y direction. Typically disp y.

disp z Variable name for displacement variable in z direction. Typically disp z for 3D
and disp y for axisymmetric models.

disp r Variable name for displacement variable in radial direction for axisymmetric or
spherically symmetric cases. Typically disp x.

density Required. Density.

76

17 Postprocessors

MOOSE Postprocessors compute a single scalar value at each timestep. These can be min-
imums, maximums, averages, volumes, or any other scalar quantity. One example of the use
of Postprocessors in BISON is computing the gas volume of an LWR rod. The gas volume
changes timestep to timestep, but since it is a single scalar quantity, a Postprocessor computes
this value.

[Postprocessors]
[./name]

type = <postprocessor type >
block = <string list >
boundary = <string list >
outputs = <string >
...

[../]
[]

type Type of postprocessor

block List of blocks. Either block numbers or names.
boundary List of boundaries (side sets). Either boundary numbers or names.

outputs Vector of output names where you would like to restrrictr trhe outrputr of vari-
able(s) associated with the postprocessor.

Most Postprocessors act on either boundaries or blocks. If no block or boundary is spec-
ified, the Postprocessor will act on the entire model. There are a few Postprocessors that
act on specific nodes or elements within the finite element mesh.

17.1 DecayHeatFunction

DecayHeatFunction computes the value of the decay heat function. The value is zero prior
to the specified time at shutdown. This postprocessor is typically used for Loss of Coolant
Accident simulations.

[./decayheatfunction]
type = DecayHeatFunction
energy_per_fission = <real > (3.28451e-11)
neutron_capture_factor = <real > (1)
time_at_shutdown = <real > (1e10)

[../]

77

type DecayHeatFunction

energy per fission The energy released per fission in J/fission.

neutron capture factor The neutron capture factor used to account for the effect of neu-
tron capture in fission products.

time at shutdown The time the reactor is shutdown and decay heat begins to take
effect.

17.2 ElementIntegralPower

ElementIntegralPower computes the power in the supplied block given the fission rate vari-
able and energy per fission.

[./elementintegralpower]
type = ElementIntegralPower
fission_rate = <string >
energy_per_fission = <real > (3.28451e-11)
variable = <string >

[../]

type ElementIntegralPower

fission rate Variable name corresponding to the fission rate. Typically
fission rate.

energy per fission The energy released per fission in J/fission.

variable The variable name this Postprocessor applies to. Typically temp.

17.3 ElementalVariableValue

In some cases it may be of interest to output an elemental variable value (e.g., stress) at a par-
ticular location in the model. This is accomplished by using the ElementalVariableValue
postprocessor.

[./ elementalvariablevalue]
type = ElementalVariableValue
elementid = <string >
variable = <string >

[../]

type ElementalVariableValue

elementid Required. The global element id from the mesh to which this postprocessor is
to be applied.

variable Required. The variable whose value is output to this postprocessor for the
given element.

78

17.4 Fission Gas Postprocessors

When using the Sifgrs fission gas release model there are four postprocessors that are used to
report the fission gas that is produced in moles (ElementIntegralFisGasGeneratedSifgrs),
fission gas within the grains (ElementIntegralFisGasGrainSifgrs), fission gas on the grain
boundary (ElementIntegralFisGasBoundarySifgrs), and the fission gas released to the plenum
in moles (ElementIntegralFisGasReleasedSifgrs). The details of including these postpro-
cessors in the input file is outlined below:

[./fis_gas_produced]
type = ElementIntegralFisGasGeneratedSifgrs
variable = <string >
block = <string list >

[../]

[./fis_gas_grain]
type = ElementIntegralFisGasGrainSifgrs
variable = <string >
block = <string list >

[../]

[./fis_gas_boundary]
type = ElementIntegralFisGasBoundarySifgrs
variable = <string >
block = <string list >

[../]

[./fis_gas_released]
type = ElementIntegralFisGasReleasedSifgrs
variable = <string >
block = <string list >

[../]

type The type of postprocessor

variable Required. The variable the postprocessor applies to. For these fission gas post-
processors the variable is typically temp.

block The blocks the postprocessor applies to. For nuclear fuel simulations fission gas
calculations apply to the fuel/pellet block.

17.5 InternalVolume

InternalVolume computes the volume of an enclosed space. The entire boundary of the en-
closed space must be represented by the given side set. If the given side set points outward,
InternalVolume will report a negative volume.

[./internalvolume}

79

type = InternalVolume
scale_factor = <real > (1)
addition = <addition > (0)

[../]

type InternalVolume

scale factor Scale factor to be applied to the internal volume calculation.

addition Number to be added to internal volume calculation. This addition is not
scaled.

17.6 NodalVariableValue

In order to obtain the value of a nodal variable at a particular location (i.e., temperature and
displacement) a NodalVariableValue postprocessor is used. For example, this postprocessor
is useful for obtaining the centerline temperature at the location of a thermocouple to compare
against experimental data.

[./nodalvariablevalue]
type = NodalVariableValue
elementid = <string >
scale_factor = <real >
variable = <string >

[../]

type NodalVariableValue

nodeid Required. The global node id from the mesh to which this postprocessor is
to be applied.

scale factor A scalar value to be multiplied by the value of the variable.

variable Required. The variable whose value is output to this postprocessor for the
given node.

17.7 NumNonlinearIterations

NumNonlinearIterations reports the number of nonlinear iterations in the just-completed
solve.

[./numnonlineariters]
type = NumNonlinearIterations

[../]

type NumNonlinearIterations

80

17.8 PlotFunction

PlotFunction gives the value of the supplied function at the current time, optionally scaled
with scale factor.

[./plotfunction]
type = PlotFunction
function = <string >
scale_factor = <real > (1)

[../]

type PlotFunction

function Required. The function to evaluate.

scale factor Scale factor to be applied to the function value.

17.9 SideAverageValue

SideAverageValue computes the area- or volume-weighted average of the named variable. It
may be used, for example, to calculate the average temperature over a side set.

[./sideaveragevalue}
type = SideAverageValue
variable = <string >

[../]

type SideAverageValue

variable Required. The variable this Postprocessor acts on.

17.10 SideFluxIntegral

SideFluxIntegral computes the integral of the flux over the given boundary.

[./sidefluxintegral]
type = SideFluxIntegral
variable = <string >
diffusivity = <string >

[../]

type SideFluxIntegral

variable Required. Variable to be used in the flux calculation.

diffusivity Required. The diffusivity material property to be used in the calculation.

81

17.11 TimestepSize

TimestepSize reports the timestep size.

[./dt]
type = TimestepSize

[../]

type TimestepSize

82

18 Solution Execution and Time Stepping

The Executioner block describes how the simulation will be executed. It includes commands
to control the solver behavior and time stepping. Time stepping is controlled by a combina-
tion of commands in the Executioner block, and the TimeStepper block nested within the
Executioner block.

[Executioner]
type = <string >
solve_type = <string >
petsc_options = <string list >
petsc_options_iname = <string list >
petsc_options_value = <string list >
line_search = <string >
l_max_its = <integer >
l_tol = <real >
nl_max_its = <integer >
nl_rel_tol = <real >
nl_abs_tol = <real >
start_time = <real >
dt = <real >
end_time = <real >
num_steps = <integer >
dtmax = <real >
dtmin = <real >
[TimeStepper]

#TimeStepper commands
[../]

type Required. Several available. Typically Transient.

solve type One of PJFNK (preconditioned JFNK), JFNK (JFNK), NEWTON
(Newton), or SolveFD (Jacobian computed by finite difference–
serial only, slow).

petsc options PETSc flags.

petsc options iname Names of PETSc name/value pairs.

petsc options value Values of PETSc name/value pairs.

line search Line search type. Typically none.

l max its Maximum number of linear iterations per solve.

l tol Linear solve tolerance.
nl max its Maximum number of nonlinear iterations per solve.

83

nl rel tol Nonlinear relative tolerance.
nl rel abs Nonlinear absolute tolerance.
start time The start time of the analysis.

end time The end time of the analysis.

num steps The maximum number of time steps.

dtmax The maximum allowed timestep size.

dtmin The minimum allowed timestep size.

Several Executioner types exist, although the Transient type is typically the appropriate
one to use for transient BISON analyses. For each type, specific options are available. To see
the complete set of possibilities, follow the Input Syntax link on the BISON wiki page.

Similarly, many PETSc options exist. Please see the online PETSc documentation for details.
Given the many possibilities in the Executioner block, it may be helpful to review examples

in the BISON tests, examples, and assessment directories.

18.1 Timestepping

The method used to calculate the size of the time steps taken by BISON is controlled by the
TimeStepper block. There are a number of types of TimeStepper available. Three of the
types most commonly used with BISON are described here. These permit the time step to be
controlled directly by providing either a single fixed time step to take throughout the analysis,
by providing the time step as a function of time, or by using adaptive timestepping algorithm can
be used to modify the time step based on the difficulty of the iterative solution, as quantified by
the numbers of linear and nonlinear iterations required to drive the residual below the tolerance
required for convergence.

18.1.1 Direct Time Step Control with Constant Time Step

The ConstantDT type of TimeStepper simply takes a constant time step size throughout the
analysis.

[TimeStepper]
type = ConstantDT
dt = <real >

[../]

type ConstantDT

dt Required. The initial timestep size.

ConstantDT begins the analysis taking the step specified by the user with the dt parameter.
If the solver fails to obtain a converged solution for a given step, the executioner cuts back the
step size and attempts to advance the time from the previous step using a smaller time step. The
time step is cut back by multiplying the time step by 0.5.

84

If the solution with the cut-back time step is still un-successful, it is repeatedly cut back until
a successful solution is obtained. The user can specify a minimum time step through the dtmin
parameter in the Executioner block. If the time step must be cut back below the minimum
size without obtaining a solution, BISON exits with an error. If the time step is cut back using
ConstantDT, that cut-back step size will be used for the remainder of the the analysis.

18.1.2 Direct Time Step Control with Varying Time Step Size

If the FunctionDT type of TimeStepper is used, BISON takes time steps that vary over time
according to a user-defined function.

[TimeStepper]
type = FunctionDT
time_t = <real list >
time_dt = <real list >

[../]

type FunctionDT

time t The abscissas of a piecewise linear function for timestep size.

time dt The ordinates of a piecewise linear function for timestep size.

The time step is controlled by a piecewise linear function defined using the time t and
time dt parameters. A vector of time steps is provided using the time dt parameter. An
accompanying vector of corresponding times is specified using the time t parameter. These
two vectors are used to form a time step vs. time function. The time step for a given step is
computed by linearly interpolating between the pairs of values provided in the vectors.

The same procedure that is used with ConstantDT is used to cut back the time step from the
user-specified value if a failed solution occurs.

18.1.3 Adaptive Time Stepping

The IterationAdaptiveDT type of TimeStepper provides a means to adapt the time step size
based on the difficulty of the solution.

[TimeStepper]
type = IterationAdaptiveDT
dt = <real >
optimal_iterations = <integer >
iteration_window = <integer > (0.2* optimal_iterations)
linear_iteration_ratio = <integer > (25)
growth_factor = <real >
cutback_factor = <real >
timestep_limiting_function = <string >
max_function_change = <real >
force_step_every_function_point = <bool > (false)

[../]

85

dt Required. The initial timestep size.

optimal iterations The target number of nonlinear iterations for adap-
tive timestepping.

iteration window The size of the nonlinear iteration window for adap-
tive timestepping.

linear iteration ratio The ratio of linear to nonlinear iterations to deter-
mine target linear iterations and window for adaptive
timestepping.

growth factor Factor by which timestep is grown if needed.

cutback factor Factor by which timestep is cut back if needed.

timestep limiting function Function used to control the timestep.

max function change Maximum change in the function over a time step.

force step every function point Controls whether a step is forced at every point in
the function.

IterationAdaptiveDT grows or shrinks the time step based on the number of iterations taken
to obtain a converged solution in the last converged step. The required optimal iterations
parameter controls the number of nonlinear iterations per time step that provides optimal solution
efficiency. If more iterations than that are required to obatin a converged solution, the time step
may be too large, resulting in undue solution difficulty, while if fewer iterations are required, it
may be possible to take larger time steps to obtain a solution more quickly.

A second parameter, iteration window, is used to control the size of the region in which
the time step is held constant. As shown in Figure 18.1, if the number of nonlinear iterations
for convergence is lower than (optimal iterations−iteration window), the time step is
increased, while if more than (optimal iterations+iteration window), iterations are re-
quired, the time step is decreased. The iteration window parameter is optional. If it is not
specified, it defaults to 1/5 the value specified for optimal iterations.

The decision on whether to grow or shrink the time step is based both on the number of non-
linear iterations and the number of linear iterations. The parameters mentioned above are used to
control the optimal iterations and window for nonlinear iterations. The same criterion is applied
to the linear iterations. Another parameter, linear iteration ratio, which defaults to 25, is
used to control the optimal iterations and window for the linear iterations. These are calculated
by multiplying linear iteration ratio by optimal iterations and iteration window,
respectively.

To grow the time step, the growth criterion must be met for both the linear iterations and non-
linear iterations. If the time step shrinkage criterion is reached for either the linear or nonlinear
iterations, the time step is decreased. To control the time step size only based on the number of
nonlinear iterations, set linear iteration ratio to a large number.

If the time step is to be increased or decreased, that is done using the factors specified with the
growth factor and cutback factor, respectively. If a solution fails to converge when adap-
tive time stepping is active, a new attempt is made using a smaller time step in the same manner
as with the fixed time step methods. The maximum and minimum time steps can be optionally

86

specified in the Executioner block using the dtmax and dtmin parameters, respectively.
In addition to controlling the time step based on the iteration count, IterationAdaptiveDT

also has an option to limit the time step based on the behavior of a time-dependent function,
optionall specified by providing the function name in timestep limiting function. This
is typically a function that is used to drive boundary conditions of the model. The step is
cut back if the change in the function from the previous step exceeds the value specified in
max function change. This allows the step size to be changed to limit the change in the bound-
ary conditions applied to the model over a step. In addition to that limit, the boolean parameter
force step every function point can be set to true to force a time step at every point in a
PiecewiseLinear function.

0 iterations

increase time step decrease time stepmaintain time step

optim
al

w
indow

w
indow

Figure 18.1: Criteria used to determine adaptive time step size

18.2 PETSc Options

The amount of PETSc options to choose as solver parameters is vast and cannot be covered in
detailed here. This section provides the recommended PETSc options depending upon whether
Dirac or Constraint based contact is used. The values for the petsc options value can change
depending on the particular problem being analyzed. For specialized problems where these
standard options do not work the user is encouraged to consult the PETSc User’s Manual or
contact the bison-users mailing list.

18.2.1 Constraint Contact

The recommended PETSc options for use with Constraint based contact are given below:

[Executioner]
...
petsc_options_iname = ’-pc_type -sub_pc_type -pc_asm_overlap

-ksp_gmres_restart ’
petsc_options_value = ’asm lu 20 101’
...

[../]

87

18.2.2 Dirac Contact

The recommended PETSc options for use with Dirac based contact are given below:

[Executioner]
...
petsc_options_iname = ’-ksp_gmres_restart -pc_type -pc_hypre_type

-pc_hypre_boomeramg_max_iter ’
petsc_options_value = ’201 hypre boomeramg 4’
...

[../]

18.3 Quadrature

When using higher order meshes (e.g. second) it is recommended to use quadrature = true
in the thermal contact block. When this parameter is set the order of the quadrature can be
specified using a [./Quadrature] subblock within the [Executioner] block as follows:

[./Quadrature]
type = <string >
element_order = <string >
order = <string >
side_order = <string >

[../]

type The type of quadrature used. Default is Gauss.

element order Order of quadrature on the elements.

order Order of quadrature used.

side order Order of quadrature used on the sides.

The recommended [./Quadrature] block when using second-order meshes is the following:

[./Quadrature]
order = FIFTH
side_order = SEVENTH

[../]

88

19 Outputs

The Outputs block lists parameters that control the frequency and type of results files produced.
It is possible to create multiple output objects each outputting at different interals, or different
variables, or varying file types. The Outputs system is vary complex and enables a large amount
of customization. This section will highlight different capabilities of the system. At the end of
the this section an example of a typical Outputs block for BISON assessment cases will be
presented.

19.1 Basic Input File Syntax

To enable output an input file must contain an Outputs block. The simplest method for enabling
output is to utilize the shortcut syntax as shown below, which enables the Console output (prints
to screen) and Exodus output for writing data to a file.

[Outputs]
console = true #output to the screen with default settings
exodus = true #output to ExodusII file with default settings

[]

19.2 Advanced Syntax

To take full advantage of the output system the use of subblocks is required. For example,
the input file snippet below is exactly equivalent, including the subblock names, to the snippet
shown above that utitlizes the shortcut syntax.

[Outputs]
[./console]

type = Console #output to the screen with default settings
[../]
[./exodus]

type = Exodus #output to ExodusII file with default settings
[../]

[]

However, the subblock syntax allows for increased control over the output and allows for
multiple outputs of the same type to be specified. For example, the following creates two Exodus
outputs, one outputting the a mesh at every time step including the initial condition the other
outputs every 3 time steps without the initial condition. Additionally, performance logging was
enabled for Console output.

89

[Outputs]
[./console]

type = Console
perf_log = true # enable performance logging

[../]
[./exodus]

type = Exodus
output_initial = true # enable the output of the initial

condition for the [ExodusII][1] file
[../]
[./exodus_3] # create a second [Exodus II][1] output

that utilizes a different output interval
type = Exodus
file_base = exodus_3 # set the file base

(the extension is automatically applied)
interval = 3 # only output every third step

[../]
[]

19.3 Common Output Parameters

In addition to allowing for short-cut syntax, the Outputs block also supports common parame-
ters. For example, output initial may be specified outside of individual subblocks, indicat-
ing that all subblocks should output the initial condition. If within a subblock the parameter is
given a different value, the subblock parameter takes precedence. The input file snippet below
demonstrate the usage of a common values as well as the use of multiple output blocks.

[Outputs]
output_initial = true # set all subblocks to output the

initial condition
vtk = true # output VTK file with default setting
[./console]

type = Console
perf_log = true

[../]
[./exodus]

type = Exodus
output_initial = false # this ExodusII files will not contain

the initial condition
[../]

[]

90

19.4 File Output Names

The default naming scheme for output files utilizes the input file name (e.g., input.i) with a suffix
that differs depending on how the output is defined:

• outputs create using the shortcut syntax an ” out” suffix is utilized and

• subblocks use the actual subblock name as the suffix.

For example, if the input file (input.i) contained the following [Outputs] block, two files
would be created: input out.e and input other.e.

[Outputs]
console = true
exodus = true # creates input_out.e
[./other] # creates input_other.e

type = Exodus
interval = 2

[../]
[]

19.5 Typical BISON Example

Now that some of the basic capabilities of the output system have been outlined, a typical
[Outputs] block from a BISON assessment case is presented.

[Outputs]
interval = 1
output_initial = true
csv = true
exodus = true
color = false
[./console]

type = Console
perf_log = true
linear_residuals = true
max_rows = 25

[../]
[]

interval The interval at which timesteps are output to the solution file. This is
a global output parameter since it is not in a subblock.

output initial Request that the initial condition is output to the solution file. This is
a global output parameter since it is not in a subblock.

csv Specify that a csv file be output containing values of all postprocessors.

exodus Specify that an ExodusII file be output.

91

color Specify that color not be output to the screen for the log.

type Specify the type for the subblock. In this case Console.

perf log Specify that the performance log be output to the screen.

linear residuals Specify that the linear residuals be output to the screen.

max rows The maximum number of postprocessor/scalar values displayed on the
screen during a timestep (set to 0 for unlimited).

92

20 Dampers

Dampers are used to decrease the attempted change to the solution with each nonlinear step.
This can be useful in preventing the solver from changing the solution dramatically from one
step to the next. This may prevent, for example, the solver from attempting to evaluate negative
temperatures.

The MaxIncrement damper is commonly used.

20.1 MaxIncrement

The MaxIncrement damper limits the change of a variable from one nonlinear step to the next.

[Dampers]
[./maxincrement]

type = MaxIncrement
max_increment = <real >
variable = <string >

[../]
[]

type MaxIncrement
max increment Required. The maximum change in solution variable allowed from one

nonlinear step to the next.

variable Required. Variable that will not be allowed to change beyond
max increment from nonlinear step to nonlinear step.

93

21 Restart and Recover

The MOOSE framework provides two ways of continuing a simulation: recover and restart. An
example restart problem is located at projects/bison/examples/restart. The instructions
below are copied from the MOOSE Wiki.

21.1 Definitions

• Restart: Running a simulation that uses data from a previous simulation. Data in this
context is very broad, it can mean spatial field data, non-spatial variables or postproces-
sors, or stateful object data. Usually the previous and new simulations use different input
files.

• Recover: Resuming an existing simulation either due to a fault or other premature termi-
nation.

• Solution File: A mesh format containing field data in addition to the mesh (i.e. a normal
output file).

• Checkpoint: A snapshot of the simulation data including all meshes, solutions, and state-
ful object data. Typically one checkpoint is stored in several different files.

• N to N: In a restart context, this means the number of processors for the previous and
current simulations must match.

• N to M: In a restart context, different numbers of processors may be used for the previous
and current simulations.

21.2 Simple Restart (Variable initialization)

• This method is best suited for restarting a simulation when the mesh in the previous simu-
lation exactly matches the mesh in the current simulation and only initial conditions need
to be set for one more variables.

• This method requires only a valid Solution File.

• MOOSE supports N to M restart when using this method.

94

http://www.mooseframework.com/wiki/Restart/

Reading field data from a nodal or elemental field from a
previous simulation
[Mesh]

MOOSE supports reading field data from ExodusII , XDA/XDR, and
mesh checkpoint files (.e, .xda, .xdr, .cp)
file = previous.e
This method of restart is only supported on serial meshes
distribution = serial

[]

[Variables]
[./nodal]

family = LAGRANGE
order = FIRST
initial_from_file_var = nodal
initial_from_file_timestep = 10

[../]
[]

[AuxVariables]
[./elemental]

family = MONOMIAL
order = CONSTANT
initial_from_file_var = elemental
initial_from_file_timestep = 10

[../]
[]

21.3 Enabling Checkpoints

Advanced restart in MOOSE requires checkpoint files. To enable automatic checkpoints us-
ing the default options (every time step, and keep last two) in your simulation simply add the
following flag to your input file:

[Outputs]
checkpoint = true

[]

f you need more control over the checkpoint system, you can create a subblock in the input
file that will allow you to change the file format, suffix, frequency of output, the number of
checkpoint files to keep, etc. For a complete list see the Doxygen page for Checkpoint.

Note: You should always set num files to at least 2 to minimize the change of ending up with
a corrupt restart file.

[Outputs]
[./my_checkpoint]

type = Checkpoint

95

num_files = 4
interval = 5

[../]
[]

21.4 Advanced Restart

• This method is best suited for situations when the mesh from the previous simulation
and the current simulation match but all variables should be reloaded and all stateful data
should be restored.

• Support for modifying some variables is supported such as dt and time step. By default,
MOOSE will automatically use the last values found in the checkpoint files.

• Only N to N restarts are supported using this method.

[Mesh]
Serial number should match corresponding Executioner parameter
file = out_cp/0010_mesh.cpr
This method of restart is only supported on serial meshes
distribution = serial

[]

[Executioner]
type = Transient

Note that the suffix is left off in the parameter below.
restart_file_base = out_cp/0010

[]

21.5 Reloading Data

It is possible to load and project data onto a different mesh from a solution file usually as an
initial condition in a new simulation. MOOSE fully supports this through the use of Solu-
tionUserObject (see Section 22.2).

21.6 Recover

Whenever MOOSE is being run with checkpoints enabled, a simulation that has terminated due
to a fault can be recovered simply by using the −−recover CLI flag.

As a supplement to this example, also included is a restart.sh script (bison/examples/restart),
which can serve as an example and reference for commands to use when using restart. The pur-
pose of this script is to test the functionality of restart.

96

22 UserObjects

PelletBrittleZone computes the brittle zone width on a per-pellet basis.

22.1 PelletBrittleZone

[./pelletbrittlezone]
type = PelletBrittleZone
pellet_id = <string >
temp = <string >
pellet_radius = <real >
a_lower = <real >
a_upper = <real >
number_pellets = <integer >

[../]

type PelletBrittleZone

pellet id Variable name for pellet id. Typically pellet id.

temp Name of temperature variable. Typically temp.

pellet radius Required. The outer radius of the fuel.

a lower Required. The lower axial coordinate of the fuel stack.

a upper Required. The upper axial coordinate of the fuel stack.

number pellets Required. Number of fuel pellets.

22.2 SolutionUserObject

A solution user object reads a variable from a mesh in one simulation to another. In order to use a
SolutionUserObject three additional parameters are required, an AuxVariable , a Function
and an AuxKernel. The AuxVariable represents the variable to be read by the solution user
object. The SolutionUserObject is set up to read the old output file. A SolutionFunction is
required to interpolate in time and space the data from the SolutionUserObject. Finally, the
FunctionAux is required that will query the function and write the value into the AuxVariable.
An example of what additions are required to the input file is shown below:

[AuxVariables]
[./temp]
[../]

97

[]

[Functions]
[./interpolated_temp]

type = SolutionFunction
from_variable = ’temp ’
solution = read_thermo_solution

[../]
[]

[UserObjects]
[./read_thermo_solution]

type = SolutionUserObject
mesh = ’temp_from_another_simulation.e’
execute_on = ’residual ’
nodal_variables = ’temp ’

[../]
[]

[AuxKernels]
[./interp_temp]

type = FunctionAux
variable = ’temp ’
function = ’interpolated_temp ’

[../]
[]

Note that in the SolutionUserObject subblock that the mesh parameter is required.

98

23 Reference Residual Problem

An advanced scenario that requires the addition of a [Problem] block in the input file is the
ReferenceResidualProblem. Reference residual is an alternative way to signify convergence
of a timestep. The structure of the [Problem] block for a two-dimensional axisymmetric simu-
lation is as follows:

[./ referenceresidualproblem]
coord_type = RZ
type = ReferenceResidualProblem
solution_variables = <string list >
reference_residual_variables = <string list >
acceptable_iterations = <integer > (0)
acceptable_multiplier = <integer > (1)

[../]

type ReferenceResidualProblem

solution variables Set of variables to be checked for relative convergences.

reference residual variables Set of variables that provide reference residuals for the
relative convergence check.

acceptable iterations Iterations after which convergence to acceptable limits
are accepted.

acceptable multiplier Multiplier applied to relative tolerance for acceptable
limit.

When using reference residual it is typically acceptable to loosen the relative tolerance for
convergence by an order of magnitude. The difficulty in setting up a ReferenceResidualProblem
currently is the requirement of creating an AuxVariable for each of the reference residual vari-
ables. Then for each Kernel that the corresponding solution variable applies to an additional
line is required to save into the reference residual variable. This requires significant changes to
the input file. If you would like to try using a ReferenceResidualProblem, please contact one
of the BISON developers for more detailed instructions of setting it up.

The implementation of ReferenceResidualProblem is scheduled to be updated within the
next year.

99

24 Frictional Contact Problem

Another advanced use of the [Problem] block is the FrictionalContactProblem. This is
used when a user wants to use kinematic (default) enforcement of frictional contact. If a user
wants to use the penalty method for frictional contact the friction coefficient needs to be
specified in the [Contact] block and the model parameter set to coulomb. A typical [Problem]
block for a two-dimensional axisymmetric case is as follows:

[./ frictionalcontactproblem]
coord_type = RZ
type = FrictionalContactProblem
friction_coefficient = <real >
master = <string list >
slave = <string list >
slip_factor = <real >
slip_too_far_factor = <real >
disp_x = <string >
disp_y = <string >
residual_x = <string >
residual_y = <string >
diag_stiff_x = <string >
diag_stiff_y = <string >
inc_slip_x = <string >
inc_slip_y = <string >
contact_slip_tolerance_factor = <real > (10)
target_contact_residual = <real >
maximum_slip_iterations = <integer > (100)
minimum_slip_iterations = <integer > (1)
slip_updates_per_iteration = <integer > (1)
solution_variables = <string list >
reference_residual_variables = <string list >

[../]

type FrictionalContactProblem

friction coefficient Required. The friction coefficient applied be-
tween the interacting surfaces.

master Required. Number or name IDs of the master sur-
faces for which slip should be calculated.

slave Required. Number or name IDs of the slave sur-
faces for which slip should be calculated.

100

slip factor Required. The fraction of calculated slip to be ap-
plied for each interaction. A value of 1 means the
entire amount of calculated slip is applied.

slip too far factor Required. The fraction of the calculated slip to be
applied for each interaction that is in the slipped-
too-far-state.

disp x Required. Variable name for the x-displacement.
Typically disp x.

disp y Required. Variable name for the y-displacement.
Typically disp y.

residual x Required. Name of auxiliary variable containing
the saved x residual.

residual y Required. Name of auxiliary variable containing
the saved y residual.

diag stiff x Required. Name of auxiliary variable containing
the saved x diagonal stiffness.

diag stiff y Required. Name of auxiliary variable containing
the saved y diagonal stiffness.

inc slip x Required. Name of auxiliary variable used to
store the incremental slip in the x direction.

inc slip y Required. Name of auxiliary variable used to
store the incremental slip in the y direction.

contact slip tolerance factor Multiplier on convergence criteria to determine
when to start slipping.

target contact residual Frictional contact residual convergence criterion.

target relative contact residual Frictional contact relative residual convergence
criterion.

maximum slip iterations Maximum number of slip iterations per step.

minimum slip iterations Minimum number of slip iterations per step.

slip updates per iteration The number of slip updates per contact iteration.

solution variables Set of variables to be checked for relative conver-
gences.

reference residual variables Set of variables that provide reference residuals for
the relative convergence check.

It can be seen that a signifcant amount of auxiliary variables are required to be added to the
input file to make FrictionalContactProblem work. In addition references to saved vari-
ables as in the ReferenceResidualProblem case is also required. If you would like to use
FrictionalContactProblem please contact a BISON developer for assistance. The imple-
mentation and robustness of FrictionalContactProblem is to be improved in the next year.

101

25 Mesh Script

25.1 Overview

To ease generation of LWR fuel meshes, a mesh script is available. The script relies on CU-
BIT [6].

25.1.1 Run the Main Script

The mesh script is at bison/tools/UO2/. The main script (mesh script.sh) is run from the shell
command line. This script invokes the Python meshing script (mesh script.py) and passes it an
input file named mesh script input.py by default.

You invoke the script as:

> ./mesh_script.sh [-c -d -l] [-p path to mesh_script.py] [-i
mesh_script_input.py] [-o output file name]

The -c flag will cause the script to check whether CUBIT can be loaded. The -d flag results in
the deletion of the CUBIT journal file when the script completes. The -l flag will generate a
log file (otherwise messages will go to the terminal). The -p flag, which is rarely used, tells the
script where to find the mesh script.py file. You may supply any mesh script input file with the
-i flag. Finally, you may specify the name of the output Exodus file with the -o flag.

The main script generates an exodus file, with QUAD elements in 2D and HEX elements in
3D.

25.1.2 Mesh Architecture

Figure 25.1 provides an overview of the architecture of a fuel rod. A fuel rod is composed of
a clad, a stack of pellets, and optionally a liner extruded on the inner surface of the clad. Each
component of this architecture corresponds to a different block in the BISON input and mesh
files. In the mesh input file, you refer to each block through a specific dictionary to create it. In
the Exodus file, blocks are numbered, and a name is provided for each of them.

The pellets contained in a fuel rod can have different geometries. There is a block for each
geometry, in the input file as well as in the Exodus file.

25.2 Input File Review

25.2.1 Pellet Type

This dictionary encapsulates a pellet geometry and the quantity of the corresponding pellets. To
refer to a parameter, you have to know its key (the quoted string between brackets).

102

	

CLAD	
INPUT	 FILE	
Dictionary:	 clad	
Creation:	 automatic	
	
EXODUS	 FILE	
Type:	 block	
Name:	 “clad”	
Number:	 1	

LINER	
INPUT	 FILE	
Dictionary:	 clad	
Creation:	 clad[‘with_liner’]	 =	 True	
	
EXODUS	 FILE	
Type:	 block	
Name:	 “liner”	
Number:	 2	

PELLET	 TYPE	 1	
INPUT	 FILE	
Dictionary:	 pellet_type_1	
Creation:	 in	 list	 “pellets”	
	
EXODUS	 FILE	
Type:	 block	
Name:	 “pellet_type_1”	
Number:	 3	

PELLET	 TYPE	 #N	
INPUT	 FILE	
Dictionary:	 pellet_type_N	
Creation:	 in	 list	 “pellets”	
	
EXODUS	 FILE	
Type:	 block	
Name:	 “pellet_type_N”	
Number:	 N+2	

Figure 25.1: Overview of the architecture of a fuel rod.

103

Pellet Type 1
Pellet1= {}
Pellet1[’type’] = ’discrete’
Pellet1[’quantity’] = 5
Pellet1[’mesh_density’] = ’medium’
Pellet1[’outer_radius’] = 0.0041
Pellet1[’inner_radius’] = 0
Pellet1[’height’] = 2*5.93e-3
Pellet1[’dish_spherical_radius’] = 1.01542e-2
Pellet1[’dish_depth’] = 3e-4
Pellet1[’chamfer_width’] = 5.0e-4
Pellet1[’chamfer_height’] = 1.6e-4

• ’type’ Type string. Must be ’discrete’ or ’smeared’. From a geometric point of view, a
smeared pellet is a rectangle. Two consecutive smeared pellets have their top and bottom
surfaces merged.

• ’quantity’ Type int. Number of pellets created with this geometry.

• ’mesh_density’ Type string.

• ’outer_radius’ Type float. Outer radius of the pellet.

• ’inner_radius’ Type float. Inner radius of the pellet.

• ’height’ Type float. Pellet height.

• ’dish_spherical_radius’ Type float. Spherical radius of the dishing. Needed only if
type is ’discrete’.

• ’dish_depth’ Type float. Depth of the dishing. Needed only if type is ’discrete’.

• ’chamfer_width’ Type float. Radial chamfer length in RZ coordinates. Must be zero for
a non-chamfered pellet. Needed only if type is ’discrete’.

• ’chamfer_height’ Type float. Axial chamfer length in RZ coordinates. Must be zero
for a non-chamfered pellet. Needed only if type is ’discrete’. If either chamfer_width or
chamfer_height is zero, both must be zero.

25.2.2 Pellet Collection

pellets = [Pellet1, Pellet2, Pellet3]

This is a list of the pellets that make up the pellet stack. The geometries are ordered from the
bottom to the top of the stack. A pellet type block must be present in this list to be created.

104

25.2.3 Stack Options

Stack options
pellet_stack = {}
pellet_stack[’merge_pellets’] = True
pellet_stack[’higher_order’] = False
pellet_stack[’angle’] = 0

• ’merge_pellets’ Type string. Control type of merging between pellets. Options are:
’yes’, ’no’, ’point’, ’surface’. See Table 25.1 for a complete description. Note that any
other string results in pellets that are not merged.

• ’higher_order’ Type boolean. Control order of mesh elements. See Table 25.2

• ’angle’ Type int. Between 0 and 360. Angle of revolution of the pellet stack. If 0,
creates a 2D fuel rod. If greater than 0, creates a 3D fuel rod.

2D discrete 2D smeared 3D discrete
’yes’ vertex curve curve
’no’ not merged not merged not merged

’point’ vertex vertex curve
’surface’ not merged curve not merged

Table 25.1: Merging control. ’Vertex’ means that the pellets are merged at their common vertex
which is the closest from the centerline. In 2D, ’curve’ means that the pellets are
merged at their common curve. In 3D, ’curve’ means that the pellets are merged at
the curve generated by the corresponding merged vertex in 2D RZ geometry.

False True
2D QUAD4 QUAD8
3D HEX8 HEX20

Table 25.2: Order of generated elements

25.2.4 Clad

clad = {}
clad[’mesh_density’] = ’medium’
clad[’gap_width’] = 8e-5
clad[’bot_gap_height’] = 1e-3
clad[’top_gap_height’] = 1.67e-3
clad[’clad_thickness’] = 5.6e-4

105

clad[’top_bot_clad_height’] = 2.24e-3
clad[’plenum_fuel_ratio’] = 0.045
clad[’with_liner’] = False
clad[’liner_width’] = 5e-5

• ’mesh_density’ Type string. CAUTION: the mesh density of the clad is related to the
mesh density of the pellets which use the same mesh dictionary as the clad.

• ’gap_width’ Type float. Radial width of the gap between the fuel and the clad (or the
liner).

• ’bot_gap_height’ Type float. Axial gap height between bottom of fuel and the cladding.

• ’top_gap_height’ Type float. Axial gap height between top of fuel and the cladding.
Either this or ’plenum_fuel ratio’ must be given.

• ’clad_thickness’ Type float. Thickness of the sleeve of the clad.

• ’top_bot_clad_height’ Type float. Height of the bottom and of the top of the clad.

• ’plenum_fuel_ratio’ Type float. Ratio of the axial gas height to the fuel height inside
the cladding. Either this or ’top_gap_height’ must be given.

• ’with_liner’ Type boolean. Whether to include a liner.

• ’liner_width’ Type float. Liner width.

25.2.5 Meshing Parameters

Parameters of mesh density ’coarse’
coarse = {}
coarse[’pellet_r_interval’] = 6
coarse[’pellet_z_interval’] = 2
coarse[’pellet_dish_interval’] = 3
coarse[’pellet_flat_top_interval’] = 2
coarse[’pellet_chamfer_interval’] = 1
coarse[’pellet_slices_interval’] = 4
coarse[’clad_radial_interval’] = 3
coarse[’clad_sleeve_scale_factor’] = 4
coarse[’cap_radial_interval’] = 6
coarse[’cap_vertical_interval’] = 3
coarse[’pellet_angular_interval’] = 6
coarse[’clad_angular_interval’] =12

The user defines a dictionary containing the mesh parameters. The user can specify the name
of this dictionary as long as the name is consistent with the names defined in the pellet type

106

Figure 25.2: Mesh parameters

	

A:	 pellet_dish_interval
B:	 pellet_flat_top_interval	
C:	 pellet_chamfer_interval	
D:	 pellet_slices_interval
	

D	

C	

A	 B	

(a) Pellet. Dashed lines represent RZ axes.

	

A:	 cap_radial_interval
B:	 clad_radial_interval	
C:	 cap_vertical_interval	
D:	 Number	 elements	 in	 fuel	 stack	 *	 clad_sleeve_scale_factor	

A	 B	

C	

D	

(b) Clad. Represented in RZ.

107

blocks for mesh_density. pellet_r_interval and pellet_z_interval are used only with
smeared pellet meshes. Figure 25.2 explains other parameters.

The angular intervals are for 3D geometries and correspond to the created arcs of circle. Note
that to have a nice mesh, you may want to have the same number of interval on the diameter of
the fuel rod and on this arc of circle.

25.3 Output File Review

Figure 25.1 summarizes names and number of the blocks in the exodus file. Figure 25.4 sum-
marizes the numbering for the sidesets and nodesets.

Blocks	
Block	 1:	 Cladding	
Block	 2:	 Liner	 or	 first	 	

	 pellet	 type	
Block	 n:	 pellet_type#	

1	

Sideset	 7:	 Cladding	 Interior	
Sideset	 8:	 All	 pellet	 exteriors	
Sideset	 9:	 Union	 of	 7	 &	 8	
Sideset	 10:	 Outer	 Radial	 Surface	 of	 Pellets	
Sideset	 11:	 Top	 Pellet	 Top	
Sideset	 12:	 Centerline	 (for	 RZ)	
Sideset	 13:	 Pellet	 interior	

2	

3	

4	

5	

6	

20	

21	
22	

23	

Sidesets	

1001	

NS	 1004:	 All	 central	 nodesets	
NS	 1005:	 All	 central	 pellet	 nodesets	
NS	 2000:	 BoRom	 Center	 Meso	
NS	 2001:	 BoRom	 Outer	 Meso	
NS	 2002:	 Middle	 Center	 Meso	
NS	 2003:	 Middle	 Outer	 Meso	
NS	 3000:	 Top	 Center	 Pellet	
NS	 3002:	 (x=<max>,	 y=0,	 z=*)	

1003	

1020	

1021	
1022	

1023	

Nodesets	

3001	

Figure 25.4: Sidesets, nodesets and blocks ids in the exodus file

25.4 Things to Know

25.4.1 Main Script

The main script is written in python v2.5. It is organized in classes: Pellet, PelletStack, Clad,
Liner and FuelRod. The link between the input file and the main is assured by three functions.

108

A first function is charged to pick read the input file. A second function checks that the syntax
of the input file makes sense for the main script. The third function creates the mesh based on
the input file.

25.4.2 Error Messages

AttributeError Caused by a missing class in the input file.

KeyError Often is caused by a wrong key in the input file. The main script should check that
the keys entered in the input file are valid and specify which key is not valid if it occurs.

Other errors should be accompanied by a descriptive message. Contact the developers if the
error message is not helpful.

109

Bibliography

[1] R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston, C. J. Permann,
D. Andrs, and R. C. Martineau. Multidimensional multiphysics simulation of nuclear fuel
behavior. J. Nucl. Mater., 423:149–163, 2012.

[2] J. D. Hales, R. L. Williamson, S. R. Novascone, D. M. Perez, B. W. Spencer, and G. Pastore.
Multidimensional multiphysics simulation of TRISO particle fuel. J. Nucl. Mater., 443:531–
543, 2013.

[3] Pavel Medvedev. Fuel performance modeling results for representative FCRD irradiation
experiments: Projected deformation in the annular AFC-3A U-10Zr fuel pins and compari-
son to alternative designs. Technical Report INL/EXT-12-27183 Revision 1, Idaho National
Laboratory, 2012.

[4] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandié. MOOSE: A parallel computa-
tional framework for coupled systems of nonlinear equations. Nucl. Eng. Design, 239:1768–
1778, 2009.

[5] L. Schoof and V. Yarberry. EXODUS II: A finite element data model. Technical Report
SAND92-2137, Sandia National Laboratories, September 1996.

[6] Sandia National Laboratories. CUBIT: Geometry and mesh generation toolkit.
http://cubit.sandia.gov, 2008.

[7] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of ap-
proaches and applications. J. Comput. Phys., 193(2):357–397, 2004.

[8] C. M. Allison, G. A. Berna, R. Chambers, E. W. Coryell, K. L. Davis, D. L. Hagrman, D. T.
Hagrman, N. L. Hampton, J. K. Hohorst, R. E. Mason, M. L. McComas, K. A. McNeil,
R. L. Miller, C. S. Olsen, G. A. Reymann, and L. J. Siefken. SCDAP/RELAP5/MOD3.1
code manual, volume IV: MATPRO–A library of materials properties for light-water-reactor
accident analysis. Technical Report NUREG/CR-6150, EGG-2720, Idaho National Engi-
neering Laboratory, 1993.

110

	Introduction
	Running BISON
	Checking Out the Code
	Internal Users
	External Users

	Updating BISON
	Executing BISON
	Getting Started
	Input to BISON
	Post Processing
	Graphical User Interface

	Overview
	Basic Syntax
	BISON Syntax Page
	Units
	High-Level Description of a BISON Simulation

	Global Parameters
	Problem
	Mesh
	Variables
	AuxVariables
	Functions
	Composite
	ParsedFunction
	PiecewiseBilinear
	PiecewiseConstant
	PiecewiseLinear

	Boundary Conditions
	BulkCoolantBC
	ConvectiveFluxBC
	ConvectiveFluxFunction
	CoolantChannel
	Dirichlet
	DirichletBC
	PresetBC
	FunctionDirichletBC
	FunctionPresetBC

	HydrogenPickup
	PlenumPressure
	Pressure

	Contact
	Mechanical Contact
	Thermal Contact
	GapHeatTransfer
	GapHeatTransferLWR

	AuxKernels
	AuxKernels for Output
	MaterialRealAux
	MaterialTensorAux

	AuxKernels for Specifying Fission Rate
	FissionRateAux
	FissionRateAuxLWR
	FissionRateFromPowerDensity

	Other AuxKernels
	Al2O3Aux
	BurnupAux
	FastNeutronFluenceAux
	FastNeutronFluxAux
	GrainRadiusAux
	OxideAux
	PelletIdAux

	Burnup
	Kernels
	Arrhenius Diffusion
	BodyForce
	Gravity
	Heat Conduction
	Heat Conduction Time Derivative
	Isotropic Diffusion
	Neutron Heat Source
	SolidMechanics
	Thermo-diffusion (Soret effect, thermophoresis)
	TimeDerivative

	Hydride Precipitation and Dissolution
	Materials
	Thermal Models
	HeatConductionMaterial
	ThermalCladMaterial
	ThermalFuel
	ThermalFuelMaterial

	Solid Mechanics Models
	CreepPyC
	CreepSiC
	CreepUO2
	Elastic
	IrradiationGrowthZr4
	MechMaterial
	MechZry
	RelocationUO2
	ThermalIrradiationCreepZr4
	PyCIrradiationStrain
	VSwellingUO2

	Fission Gas Models
	ForMas
	Sifgrs

	Mass Diffusion Models
	Other Models
	Arrhenius Material Property
	Density

	Postprocessors
	DecayHeatFunction
	ElementIntegralPower
	ElementalVariableValue
	Fission Gas Postprocessors
	InternalVolume
	NodalVariableValue
	NumNonlinearIterations
	PlotFunction
	SideAverageValue
	SideFluxIntegral
	TimestepSize

	Solution Execution and Time Stepping
	Timestepping
	Direct Time Step Control with Constant Time Step
	Direct Time Step Control with Varying Time Step Size
	Adaptive Time Stepping

	PETSc Options
	Constraint Contact
	Dirac Contact

	Quadrature

	Outputs
	Basic Input File Syntax
	Advanced Syntax
	Common Output Parameters
	File Output Names
	Typical BISON Example

	Dampers
	MaxIncrement

	Restart and Recover
	Definitions
	Simple Restart (Variable initialization)
	Enabling Checkpoints
	Advanced Restart
	Reloading Data
	Recover

	UserObjects
	PelletBrittleZone
	SolutionUserObject

	Reference Residual Problem
	Frictional Contact Problem
	Mesh Script
	Overview
	Run the Main Script
	Mesh Architecture

	Input File Review
	Pellet Type
	Pellet Collection
	Stack Options
	Clad
	Meshing Parameters

	Output File Review
	Things to Know
	Main Script
	Error Messages

	Bibliography

